![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > exinst01 | Structured version Visualization version Unicode version |
Description: Existential
Instantiation. Virtual Deduction rule corresponding to a
special case of the Natural Deduction Sequent Calculus rule called Rule
C in [Margaris] p. 79 and E ![]() |
Ref | Expression |
---|---|
exinst01.1 |
![]() ![]() ![]() ![]() |
exinst01.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
exinst01.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
exinst01.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
exinst01 |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exinst01.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | exinst01.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | dfvd2i 38801 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | exinst01.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | exinst01.4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 1, 3, 4, 5 | eexinst01 38732 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | dfvd1ir 38789 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-nf 1710 df-vd1 38786 df-vd2 38794 |
This theorem is referenced by: vk15.4jVD 39150 |
Copyright terms: Public domain | W3C validator |