MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbim1OLD Structured version   Visualization version   Unicode version

Theorem hbim1OLD 2227
Description: Obsolete proof of hbim 2127 as of 6-Oct-2021. (Contributed by NM, 2-Jun-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
hbim1OLD.1  |-  ( ph  ->  A. x ph )
hbim1OLD.2  |-  ( ph  ->  ( ps  ->  A. x ps ) )
Assertion
Ref Expression
hbim1OLD  |-  ( (
ph  ->  ps )  ->  A. x ( ph  ->  ps ) )

Proof of Theorem hbim1OLD
StepHypRef Expression
1 hbim1OLD.2 . . 3  |-  ( ph  ->  ( ps  ->  A. x ps ) )
21a2i 14 . 2  |-  ( (
ph  ->  ps )  -> 
( ph  ->  A. x ps ) )
3 hbim1OLD.1 . . 3  |-  ( ph  ->  A. x ph )
4319.21hOLD 2216 . 2  |-  ( A. x ( ph  ->  ps )  <->  ( ph  ->  A. x ps ) )
52, 4sylibr 224 1  |-  ( (
ph  ->  ps )  ->  A. x ( ph  ->  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-ex 1705  df-nfOLD 1721
This theorem is referenced by:  nfim1OLD  2228  hbimOLD  2231
  Copyright terms: Public domain W3C validator