MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbntOLD Structured version   Visualization version   Unicode version

Theorem hbntOLD 2145
Description: Obsolete proof of hbnt 2144 as of 13-Oct-2021. (Contributed by NM, 10-May-1993.) (Proof shortened by Wolf Lammen, 3-Mar-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
hbntOLD  |-  ( A. x ( ph  ->  A. x ph )  -> 
( -.  ph  ->  A. x  -.  ph )
)

Proof of Theorem hbntOLD
StepHypRef Expression
1 df-ex 1705 . . 3  |-  ( E. x ph  <->  -.  A. x  -.  ph )
2 19.9ht 2143 . . 3  |-  ( A. x ( ph  ->  A. x ph )  -> 
( E. x ph  ->  ph ) )
31, 2syl5bir 233 . 2  |-  ( A. x ( ph  ->  A. x ph )  -> 
( -.  A. x  -.  ph  ->  ph ) )
43con1d 139 1  |-  ( A. x ( ph  ->  A. x ph )  -> 
( -.  ph  ->  A. x  -.  ph )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator