MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbralrimi Structured version   Visualization version   Unicode version

Theorem hbralrimi 2954
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). This theorem contains the common proof steps for ralrimi 2957 and ralrimiv 2965. Its main advantage over these two is its minimal references to axioms. The proof is extracted from NM's previous work. (Contributed by Wolf Lammen, 4-Dec-2019.)
Hypotheses
Ref Expression
hbralrimi.1  |-  ( ph  ->  A. x ph )
hbralrimi.2  |-  ( ph  ->  ( x  e.  A  ->  ps ) )
Assertion
Ref Expression
hbralrimi  |-  ( ph  ->  A. x  e.  A  ps )

Proof of Theorem hbralrimi
StepHypRef Expression
1 hbralrimi.1 . . 3  |-  ( ph  ->  A. x ph )
2 hbralrimi.2 . . 3  |-  ( ph  ->  ( x  e.  A  ->  ps ) )
31, 2alrimih 1751 . 2  |-  ( ph  ->  A. x ( x  e.  A  ->  ps ) )
4 df-ral 2917 . 2  |-  ( A. x  e.  A  ps  <->  A. x ( x  e.  A  ->  ps )
)
53, 4sylibr 224 1  |-  ( ph  ->  A. x  e.  A  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481    e. wcel 1990   A.wral 2912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-ral 2917
This theorem is referenced by:  ralrimi  2957  ralrimiv  2965  bnj1145  31061
  Copyright terms: Public domain W3C validator