MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  helloworld Structured version   Visualization version   Unicode version

Theorem helloworld 27321
Description: The classic "Hello world" benchmark has been translated into 314 computer programming languages - see http://www.roesler-ac.de/wolfram/hello.htm. However, for many years it eluded a proof that it is more than just a conjecture, even though a wily mathematician once claimed, "I have discovered a truly marvelous proof of this, which this margin is too narrow to contain." Using an IBM 709 mainframe, a team of mathematicians led by Prof. Loof Lirpa, at the New College of Tahiti, were finally able put it rest with a remarkably short proof only 4 lines long. (Contributed by Prof. Loof Lirpa, 1-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
helloworld  |-  -.  (
h  e.  ( L L 0 )  /\  W (/) ( R. 1 d ) )

Proof of Theorem helloworld
StepHypRef Expression
1 noel 3919 . . 3  |-  -.  <. W ,  ( R. 1 d ) >.  e.  (/)
2 df-br 4654 . . 3  |-  ( W
(/) ( R. 1 d )  <->  <. W , 
( R. 1 d ) >.  e.  (/) )
31, 2mtbir 313 . 2  |-  -.  W (/) ( R. 1 d )
43intnan 960 1  |-  -.  (
h  e.  ( L L 0 )  /\  W (/) ( R. 1 d ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    e. wcel 1990   (/)c0 3915   <.cop 4183   class class class wbr 4653  (class class class)co 6650   R.cnr 9687   0cc0 9936   1c1 9937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-nul 3916  df-br 4654
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator