Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpnot Structured version   Visualization version   Unicode version

Theorem ifpnot 37814
Description: Restate negated wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
Assertion
Ref Expression
ifpnot  |-  ( -. 
ph 
<-> if- ( ph , F.  , T.  ) )

Proof of Theorem ifpnot
StepHypRef Expression
1 tru 1487 . . . 4  |- T.
21olci 406 . . 3  |-  ( ph  \/ T.  )
32biantru 526 . 2  |-  ( ( -.  ph  \/ F.  ) 
<->  ( ( -.  ph  \/ F.  )  /\  ( ph  \/ T.  ) ) )
4 fal 1490 . . 3  |-  -. F.
54biorfi 422 . 2  |-  ( -. 
ph 
<->  ( -.  ph  \/ F.  ) )
6 dfifp4 1016 . 2  |-  (if- (
ph , F.  , T.  )  <->  ( ( -. 
ph  \/ F.  )  /\  ( ph  \/ T.  ) ) )
73, 5, 63bitr4i 292 1  |-  ( -. 
ph 
<-> if- ( ph , F.  , T.  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    /\ wa 384  if-wif 1012   T. wtru 1484   F. wfal 1488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-tru 1486  df-fal 1489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator