MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lukshefth2 Structured version   Visualization version   Unicode version

Theorem lukshefth2 1621
Description: Lemma for renicax 1622. (Contributed by NM, 31-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
lukshefth2  |-  ( ( ta  -/\  th )  -/\  ( ( th  -/\  ta )  -/\  ( th  -/\  ta )
) )

Proof of Theorem lukshefth2
StepHypRef Expression
1 lukshef-ax1 1619 . . . 4  |-  ( ( ps  -/\  ( ch  -/\  ph ) )  -/\  (
( th  -/\  ( th  -/\  th ) ) 
-/\  ( ( th 
-/\  ch )  -/\  (
( ps  -/\  th )  -/\  ( ps  -/\  th )
) ) ) )
2 lukshef-ax1 1619 . . . 4  |-  ( ( ( ps  -/\  ( ch  -/\  ph ) )  -/\  ( ( th  -/\  ( th  -/\  th ) ) 
-/\  ( ( th 
-/\  ch )  -/\  (
( ps  -/\  th )  -/\  ( ps  -/\  th )
) ) ) ) 
-/\  ( ( th 
-/\  ( th  -/\  th )
)  -/\  ( ( th  -/\  ( th  -/\  ( th  -/\  th ) ) )  -/\  ( (
( ps  -/\  ( ch  -/\  ph ) )  -/\  th )  -/\  ( ( ps  -/\  ( ch  -/\  ph ) )  -/\  th )
) ) ) )
31, 2nic-mp 1596 . . 3  |-  ( ( th  -/\  ( th  -/\  ( th  -/\  th )
) )  -/\  (
( ( ps  -/\  ( ch  -/\  ph )
)  -/\  th )  -/\  ( ( ps  -/\  ( ch  -/\  ph )
)  -/\  th )
) )
4 lukshefth1 1620 . . . 4  |-  ( ( ( ( ta  -/\  ph )  -/\  ( ( ph  -/\  ta )  -/\  ( ph  -/\  ta )
) )  -/\  ( th  -/\  ( th  -/\  th )
) )  -/\  ( ph  -/\  ( ph  -/\  ph )
) )
5 lukshef-ax1 1619 . . . . 5  |-  ( ( ( th  -/\  ( th  -/\  ( th  -/\  th )
) )  -/\  (
( ( ps  -/\  ( ch  -/\  ph )
)  -/\  th )  -/\  ( ( ps  -/\  ( ch  -/\  ph )
)  -/\  th )
) )  -/\  (
( ph  -/\  ( ph  -/\  ph ) )  -/\  (
( ph  -/\  ( ( ps  -/\  ( ch  -/\  ph ) )  -/\  th )
)  -/\  ( (
( th  -/\  ( th  -/\  ( th  -/\  th )
) )  -/\  ph )  -/\  ( ( th  -/\  ( th  -/\  ( th  -/\  th )
) )  -/\  ph )
) ) ) )
6 lukshef-ax1 1619 . . . . 5  |-  ( ( ( ( th  -/\  ( th  -/\  ( th  -/\  th )
) )  -/\  (
( ( ps  -/\  ( ch  -/\  ph )
)  -/\  th )  -/\  ( ( ps  -/\  ( ch  -/\  ph )
)  -/\  th )
) )  -/\  (
( ph  -/\  ( ph  -/\  ph ) )  -/\  (
( ph  -/\  ( ( ps  -/\  ( ch  -/\  ph ) )  -/\  th )
)  -/\  ( (
( th  -/\  ( th  -/\  ( th  -/\  th )
) )  -/\  ph )  -/\  ( ( th  -/\  ( th  -/\  ( th  -/\  th )
) )  -/\  ph )
) ) ) ) 
-/\  ( ( ( ( ( ta  -/\  ph )  -/\  ( ( ph  -/\  ta )  -/\  ( ph  -/\  ta )
) )  -/\  ( th  -/\  ( th  -/\  th )
) )  -/\  (
( ( ( ta 
-/\  ph )  -/\  (
( ph  -/\  ta )  -/\  ( ph  -/\  ta )
) )  -/\  ( th  -/\  ( th  -/\  th )
) )  -/\  (
( ( ta  -/\  ph )  -/\  ( ( ph  -/\  ta )  -/\  ( ph  -/\  ta )
) )  -/\  ( th  -/\  ( th  -/\  th )
) ) ) ) 
-/\  ( ( ( ( ( ta  -/\  ph )  -/\  ( ( ph  -/\  ta )  -/\  ( ph  -/\  ta )
) )  -/\  ( th  -/\  ( th  -/\  th )
) )  -/\  ( ph  -/\  ( ph  -/\  ph )
) )  -/\  (
( ( ( th 
-/\  ( th  -/\  ( th  -/\  th ) ) )  -/\  ( (
( ps  -/\  ( ch  -/\  ph ) )  -/\  th )  -/\  ( ( ps  -/\  ( ch  -/\  ph ) )  -/\  th )
) )  -/\  (
( ( ta  -/\  ph )  -/\  ( ( ph  -/\  ta )  -/\  ( ph  -/\  ta )
) )  -/\  ( th  -/\  ( th  -/\  th )
) ) )  -/\  ( ( ( th 
-/\  ( th  -/\  ( th  -/\  th ) ) )  -/\  ( (
( ps  -/\  ( ch  -/\  ph ) )  -/\  th )  -/\  ( ( ps  -/\  ( ch  -/\  ph ) )  -/\  th )
) )  -/\  (
( ( ta  -/\  ph )  -/\  ( ( ph  -/\  ta )  -/\  ( ph  -/\  ta )
) )  -/\  ( th  -/\  ( th  -/\  th )
) ) ) ) ) ) )
75, 6nic-mp 1596 . . . 4  |-  ( ( ( ( ( ta 
-/\  ph )  -/\  (
( ph  -/\  ta )  -/\  ( ph  -/\  ta )
) )  -/\  ( th  -/\  ( th  -/\  th )
) )  -/\  ( ph  -/\  ( ph  -/\  ph )
) )  -/\  (
( ( ( th 
-/\  ( th  -/\  ( th  -/\  th ) ) )  -/\  ( (
( ps  -/\  ( ch  -/\  ph ) )  -/\  th )  -/\  ( ( ps  -/\  ( ch  -/\  ph ) )  -/\  th )
) )  -/\  (
( ( ta  -/\  ph )  -/\  ( ( ph  -/\  ta )  -/\  ( ph  -/\  ta )
) )  -/\  ( th  -/\  ( th  -/\  th )
) ) )  -/\  ( ( ( th 
-/\  ( th  -/\  ( th  -/\  th ) ) )  -/\  ( (
( ps  -/\  ( ch  -/\  ph ) )  -/\  th )  -/\  ( ( ps  -/\  ( ch  -/\  ph ) )  -/\  th )
) )  -/\  (
( ( ta  -/\  ph )  -/\  ( ( ph  -/\  ta )  -/\  ( ph  -/\  ta )
) )  -/\  ( th  -/\  ( th  -/\  th )
) ) ) ) )
84, 7nic-mp 1596 . . 3  |-  ( ( ( th  -/\  ( th  -/\  ( th  -/\  th )
) )  -/\  (
( ( ps  -/\  ( ch  -/\  ph )
)  -/\  th )  -/\  ( ( ps  -/\  ( ch  -/\  ph )
)  -/\  th )
) )  -/\  (
( ( ta  -/\  ph )  -/\  ( ( ph  -/\  ta )  -/\  ( ph  -/\  ta )
) )  -/\  ( th  -/\  ( th  -/\  th )
) ) )
93, 8nic-mp 1596 . 2  |-  ( th 
-/\  ( th  -/\  th )
)
10 lukshef-ax1 1619 . 2  |-  ( ( th  -/\  ( th  -/\ 
th ) )  -/\  ( ( ta  -/\  ( ta  -/\  ta )
)  -/\  ( ( ta  -/\  th )  -/\  ( ( th  -/\  ta )  -/\  ( th  -/\  ta )
) ) ) )
119, 10nic-mp 1596 1  |-  ( ( ta  -/\  th )  -/\  ( ( th  -/\  ta )  -/\  ( th  -/\  ta )
) )
Colors of variables: wff setvar class
Syntax hints:    -/\ wnan 1447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-nan 1448
This theorem is referenced by:  renicax  1622
  Copyright terms: Public domain W3C validator