| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nic-mp | Structured version Visualization version Unicode version | ||
| Description: Derive Nicod's rule of
modus ponens using 'nand', from the standard one.
Although the major and minor premise together also imply |
| Ref | Expression |
|---|---|
| nic-jmin |
|
| nic-jmaj |
|
| Ref | Expression |
|---|---|
| nic-mp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nic-jmin |
. 2
| |
| 2 | nic-jmaj |
. . . 4
| |
| 3 | nannan 1451 |
. . . 4
| |
| 4 | 2, 3 | mpbi 220 |
. . 3
|
| 5 | 4 | simprd 479 |
. 2
|
| 6 | 1, 5 | ax-mp 5 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-nan 1448 |
| This theorem is referenced by: nic-imp 1600 nic-idlem2 1602 nic-id 1603 nic-swap 1604 nic-isw1 1605 nic-isw2 1606 nic-iimp1 1607 nic-idel 1609 nic-ich 1610 nic-stdmp 1615 nic-luk1 1616 nic-luk2 1617 nic-luk3 1618 lukshefth1 1620 lukshefth2 1621 renicax 1622 |
| Copyright terms: Public domain | W3C validator |