![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nic-mp | Structured version Visualization version Unicode version |
Description: Derive Nicod's rule of
modus ponens using 'nand', from the standard one.
Although the major and minor premise together also imply ![]() |
Ref | Expression |
---|---|
nic-jmin |
![]() ![]() |
nic-jmaj |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nic-mp |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-jmin |
. 2
![]() ![]() | |
2 | nic-jmaj |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | nannan 1451 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpbi 220 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | simprd 479 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | ax-mp 5 |
1
![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-nan 1448 |
This theorem is referenced by: nic-imp 1600 nic-idlem2 1602 nic-id 1603 nic-swap 1604 nic-isw1 1605 nic-isw2 1606 nic-iimp1 1607 nic-idel 1609 nic-ich 1610 nic-stdmp 1615 nic-luk1 1616 nic-luk2 1617 nic-luk3 1618 lukshefth1 1620 lukshefth2 1621 renicax 1622 |
Copyright terms: Public domain | W3C validator |