Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandysum2p2e4 Structured version   Visualization version   Unicode version

Theorem mdandysum2p2e4 41166
Description: CONTRADICTION PROVED AT 1 + 1 = 2 . Luckily Mario Carneiro did a successful version of his own.

See Mario's Relevant Work: 1.3.14 Half adder and full adder in propositional calculus.

Given the right hypotheses we can prove a dandysum of 2+2=4. The qed step is the value '4' in Decimal BEING IMPLIED by the hypotheses.

Note: Values that when added which exceed a 4bit value are not supported.

Note: Digits begin from left (least) to right (greatest). e.g. 1000 would be '1', 0100 would be '2'. 0010 would be '4'.

How to perceive the hypotheses' bits in order: ( th <-> F. ), ( ta <-> F. ) Would be input value X's first bit, and input value Y's first bit.

( et <-> F. ), ( ze <-> F. ) would be input value X's second bit, and input value Y's second bit.

In mdandysum2p2e4, one might imagine what jth or jta could be then do the math with their truths. Also limited to the restriction jth, jta are having opposite truths equivalent to the stated truth constants.

(Contributed by Jarvin Udandy, 6-Sep-2016.)

Hypotheses
Ref Expression
mdandysum2p2e4.1  |-  (jth  <-> F.  )
mdandysum2p2e4.2  |-  (jta  <-> T.  )
mdandysum2p2e4.a  |-  ( ph  <->  ( th  /\  ta )
)
mdandysum2p2e4.b  |-  ( ps  <->  ( et  /\  ze )
)
mdandysum2p2e4.c  |-  ( ch  <->  ( si  /\  rh ) )
mdandysum2p2e4.d  |-  ( th  <-> jth
)
mdandysum2p2e4.e  |-  ( ta  <-> jth
)
mdandysum2p2e4.f  |-  ( et  <-> jta
)
mdandysum2p2e4.g  |-  ( ze  <-> jta
)
mdandysum2p2e4.h  |-  ( si  <-> jth
)
mdandysum2p2e4.i  |-  ( rh  <-> jth
)
mdandysum2p2e4.j  |-  ( mu  <-> jth
)
mdandysum2p2e4.k  |-  ( la  <-> jth
)
mdandysum2p2e4.l  |-  ( ka  <->  ( ( th  \/_  ta )  \/_  ( th  /\  ta ) ) )
mdandysum2p2e4.m  |-  (jph  <->  ( ( et  \/_  ze )  \/  ph ) )
mdandysum2p2e4.n  |-  (jps  <->  ( ( si  \/_  rh )  \/  ps )
)
mdandysum2p2e4.o  |-  (jch  <->  ( ( mu  \/_  la )  \/  ch ) )
Assertion
Ref Expression
mdandysum2p2e4  |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph  <->  ( th  /\  ta ) )  /\  ( ps  <->  ( et  /\  ze ) ) )  /\  ( ch  <->  ( si  /\  rh ) ) )  /\  ( th  <-> F.  ) )  /\  ( ta  <-> F.  )
)  /\  ( et  <-> T.  ) )  /\  ( ze 
<-> T.  ) )  /\  ( si  <-> F.  ) )  /\  ( rh  <-> F.  )
)  /\  ( mu  <-> F.  ) )  /\  ( la 
<-> F.  ) )  /\  ( ka  <->  ( ( th 
\/_  ta )  \/_  ( th  /\  ta ) ) ) )  /\  (jph  <->  ( ( et  \/_  ze )  \/  ph ) ) )  /\  (jps  <->  ( ( si  \/_  rh )  \/  ps )
) )  /\  (jch  <->  ( ( mu  \/_  la )  \/  ch ) ) )  ->  ( ( ( ( ka  <-> F.  )  /\  (jph  <-> F.  )
)  /\  (jps  <-> T.  ) )  /\  (jch  <-> F.  ) ) )

Proof of Theorem mdandysum2p2e4
StepHypRef Expression
1 mdandysum2p2e4.a . 2  |-  ( ph  <->  ( th  /\  ta )
)
2 mdandysum2p2e4.b . 2  |-  ( ps  <->  ( et  /\  ze )
)
3 mdandysum2p2e4.c . 2  |-  ( ch  <->  ( si  /\  rh ) )
4 mdandysum2p2e4.d . . 3  |-  ( th  <-> jth
)
5 mdandysum2p2e4.1 . . 3  |-  (jth  <-> F.  )
64, 5aisbbisfaisf 41069 . 2  |-  ( th  <-> F.  )
7 mdandysum2p2e4.e . . 3  |-  ( ta  <-> jth
)
87, 5aisbbisfaisf 41069 . 2  |-  ( ta  <-> F.  )
9 mdandysum2p2e4.f . . 3  |-  ( et  <-> jta
)
10 mdandysum2p2e4.2 . . 3  |-  (jta  <-> T.  )
119, 10aiffbbtat 41068 . 2  |-  ( et  <-> T.  )
12 mdandysum2p2e4.g . . 3  |-  ( ze  <-> jta
)
1312, 10aiffbbtat 41068 . 2  |-  ( ze  <-> T.  )
14 mdandysum2p2e4.h . . 3  |-  ( si  <-> jth
)
1514, 5aisbbisfaisf 41069 . 2  |-  ( si  <-> F.  )
16 mdandysum2p2e4.i . . 3  |-  ( rh  <-> jth
)
1716, 5aisbbisfaisf 41069 . 2  |-  ( rh  <-> F.  )
18 mdandysum2p2e4.j . . 3  |-  ( mu  <-> jth
)
1918, 5aisbbisfaisf 41069 . 2  |-  ( mu  <-> F.  )
20 mdandysum2p2e4.k . . 3  |-  ( la  <-> jth
)
2120, 5aisbbisfaisf 41069 . 2  |-  ( la  <-> F.  )
22 mdandysum2p2e4.l . 2  |-  ( ka  <->  ( ( th  \/_  ta )  \/_  ( th  /\  ta ) ) )
23 mdandysum2p2e4.m . 2  |-  (jph  <->  ( ( et  \/_  ze )  \/  ph ) )
24 mdandysum2p2e4.n . 2  |-  (jps  <->  ( ( si  \/_  rh )  \/  ps )
)
25 mdandysum2p2e4.o . 2  |-  (jch  <->  ( ( mu  \/_  la )  \/  ch ) )
261, 2, 3, 6, 8, 11, 13, 15, 17, 19, 21, 22, 23, 24, 25dandysum2p2e4 41165 1  |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph  <->  ( th  /\  ta ) )  /\  ( ps  <->  ( et  /\  ze ) ) )  /\  ( ch  <->  ( si  /\  rh ) ) )  /\  ( th  <-> F.  ) )  /\  ( ta  <-> F.  )
)  /\  ( et  <-> T.  ) )  /\  ( ze 
<-> T.  ) )  /\  ( si  <-> F.  ) )  /\  ( rh  <-> F.  )
)  /\  ( mu  <-> F.  ) )  /\  ( la 
<-> F.  ) )  /\  ( ka  <->  ( ( th 
\/_  ta )  \/_  ( th  /\  ta ) ) ) )  /\  (jph  <->  ( ( et  \/_  ze )  \/  ph ) ) )  /\  (jps  <->  ( ( si  \/_  rh )  \/  ps )
) )  /\  (jch  <->  ( ( mu  \/_  la )  \/  ch ) ) )  ->  ( ( ( ( ka  <-> F.  )  /\  (jph  <-> F.  )
)  /\  (jps  <-> T.  ) )  /\  (jch  <-> F.  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/_ wxo 1464   T. wtru 1484   F. wfal 1488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-xor 1465  df-tru 1486  df-fal 1489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator