![]() |
Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dandysum2p2e4 | Structured version Visualization version Unicode version |
Description:
CONTRADICTION PROVED AT 1 + 1 = 2 . Given the right hypotheses we can prove a dandysum of 2+2=4. The qed step is the value '4' in Decimal BEING IMPLIED by the hypotheses. Note: Values that when added which exceed a 4bit value are not supported. Note: Digits begin from left (least) to right (greatest). e.g. 1000 would be '1', 0100 would be '2'. 0010 would be '4'. How to perceive the hypotheses' bits in order: ( th <-> F. ), ( ta <-> F. ) Would be input value X's first bit, and input value Y's first bit. ( et <-> F ), ( ze <-> F. ) would be input value X's second bit, and input value Y's second bit. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
Ref | Expression |
---|---|
dandysum2p2e4.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
dandysum2p2e4.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
dandysum2p2e4.c |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
dandysum2p2e4.d |
![]() ![]() ![]() ![]() ![]() ![]() |
dandysum2p2e4.e |
![]() ![]() ![]() ![]() ![]() ![]() |
dandysum2p2e4.f |
![]() ![]() ![]() ![]() ![]() ![]() |
dandysum2p2e4.g |
![]() ![]() ![]() ![]() ![]() ![]() |
dandysum2p2e4.h |
![]() ![]() ![]() ![]() ![]() ![]() |
dandysum2p2e4.i |
![]() ![]() ![]() ![]() ![]() ![]() |
dandysum2p2e4.j |
![]() ![]() ![]() ![]() ![]() ![]() |
dandysum2p2e4.k |
![]() ![]() ![]() ![]() ![]() ![]() |
dandysum2p2e4.l |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
dandysum2p2e4.m |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
dandysum2p2e4.n |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
dandysum2p2e4.o |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
dandysum2p2e4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dandysum2p2e4.l |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpi 206 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | dandysum2p2e4.d |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | dandysum2p2e4.e |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | bothfbothsame 41067 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | aisbnaxb 41078 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 3 | aisfina 41065 |
. . . . . . . . 9
![]() ![]() ![]() |
8 | 7 | notatnand 41063 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 6, 8 | 2false 365 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9 | aisbnaxb 41078 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 2, 10 | aibnbaif 41074 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
12 | dandysum2p2e4.m |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | 12 | biimpi 206 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | dandysum2p2e4.f |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() | |
15 | dandysum2p2e4.g |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 14, 15 | bothtbothsame 41066 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() |
17 | 16 | aisbnaxb 41078 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | dandysum2p2e4.a |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
19 | 8, 18 | mtbir 313 |
. . . . . . 7
![]() ![]() ![]() |
20 | 17, 19 | pm3.2ni 899 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 13, 20 | aibnbaif 41074 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
22 | 11, 21 | pm3.2i 471 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | dandysum2p2e4.n |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
24 | dandysum2p2e4.b |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
25 | 14, 15 | astbstanbst 41076 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 24, 25 | aiffbbtat 41068 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() |
27 | 26 | aistia 41064 |
. . . . . . 7
![]() ![]() |
28 | 27 | olci 406 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 28 | bitru 1496 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | 23, 29 | aiffbbtat 41068 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
31 | 22, 30 | pm3.2i 471 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | dandysum2p2e4.o |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
33 | 32 | biimpi 206 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | dandysum2p2e4.j |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() | |
35 | dandysum2p2e4.k |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() | |
36 | 34, 35 | bothfbothsame 41067 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
37 | 36 | aisbnaxb 41078 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
38 | dandysum2p2e4.h |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() | |
39 | 38 | aisfina 41065 |
. . . . . . 7
![]() ![]() ![]() |
40 | 39 | notatnand 41063 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
41 | dandysum2p2e4.c |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
42 | 40, 41 | mtbir 313 |
. . . . 5
![]() ![]() ![]() |
43 | 37, 42 | pm3.2ni 899 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
44 | 33, 43 | aibnbaif 41074 |
. . 3
![]() ![]() ![]() ![]() ![]() |
45 | 31, 44 | pm3.2i 471 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
46 | 45 | a1i 11 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-xor 1465 df-tru 1486 df-fal 1489 |
This theorem is referenced by: mdandysum2p2e4 41166 |
Copyright terms: Public domain | W3C validator |