| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dandysum2p2e4 | Structured version Visualization version Unicode version | ||
| Description:
CONTRADICTION PROVED AT 1 + 1 = 2 . Given the right hypotheses we can prove a dandysum of 2+2=4. The qed step is the value '4' in Decimal BEING IMPLIED by the hypotheses. Note: Values that when added which exceed a 4bit value are not supported. Note: Digits begin from left (least) to right (greatest). e.g. 1000 would be '1', 0100 would be '2'. 0010 would be '4'. How to perceive the hypotheses' bits in order: ( th <-> F. ), ( ta <-> F. ) Would be input value X's first bit, and input value Y's first bit. ( et <-> F ), ( ze <-> F. ) would be input value X's second bit, and input value Y's second bit. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| Ref | Expression |
|---|---|
| dandysum2p2e4.a |
|
| dandysum2p2e4.b |
|
| dandysum2p2e4.c |
|
| dandysum2p2e4.d |
|
| dandysum2p2e4.e |
|
| dandysum2p2e4.f |
|
| dandysum2p2e4.g |
|
| dandysum2p2e4.h |
|
| dandysum2p2e4.i |
|
| dandysum2p2e4.j |
|
| dandysum2p2e4.k |
|
| dandysum2p2e4.l |
|
| dandysum2p2e4.m |
|
| dandysum2p2e4.n |
|
| dandysum2p2e4.o |
|
| Ref | Expression |
|---|---|
| dandysum2p2e4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dandysum2p2e4.l |
. . . . . . 7
| |
| 2 | 1 | biimpi 206 |
. . . . . 6
|
| 3 | dandysum2p2e4.d |
. . . . . . . . . 10
| |
| 4 | dandysum2p2e4.e |
. . . . . . . . . 10
| |
| 5 | 3, 4 | bothfbothsame 41067 |
. . . . . . . . 9
|
| 6 | 5 | aisbnaxb 41078 |
. . . . . . . 8
|
| 7 | 3 | aisfina 41065 |
. . . . . . . . 9
|
| 8 | 7 | notatnand 41063 |
. . . . . . . 8
|
| 9 | 6, 8 | 2false 365 |
. . . . . . 7
|
| 10 | 9 | aisbnaxb 41078 |
. . . . . 6
|
| 11 | 2, 10 | aibnbaif 41074 |
. . . . 5
|
| 12 | dandysum2p2e4.m |
. . . . . . 7
| |
| 13 | 12 | biimpi 206 |
. . . . . 6
|
| 14 | dandysum2p2e4.f |
. . . . . . . . 9
| |
| 15 | dandysum2p2e4.g |
. . . . . . . . 9
| |
| 16 | 14, 15 | bothtbothsame 41066 |
. . . . . . . 8
|
| 17 | 16 | aisbnaxb 41078 |
. . . . . . 7
|
| 18 | dandysum2p2e4.a |
. . . . . . . 8
| |
| 19 | 8, 18 | mtbir 313 |
. . . . . . 7
|
| 20 | 17, 19 | pm3.2ni 899 |
. . . . . 6
|
| 21 | 13, 20 | aibnbaif 41074 |
. . . . 5
|
| 22 | 11, 21 | pm3.2i 471 |
. . . 4
|
| 23 | dandysum2p2e4.n |
. . . . 5
| |
| 24 | dandysum2p2e4.b |
. . . . . . . . 9
| |
| 25 | 14, 15 | astbstanbst 41076 |
. . . . . . . . 9
|
| 26 | 24, 25 | aiffbbtat 41068 |
. . . . . . . 8
|
| 27 | 26 | aistia 41064 |
. . . . . . 7
|
| 28 | 27 | olci 406 |
. . . . . 6
|
| 29 | 28 | bitru 1496 |
. . . . 5
|
| 30 | 23, 29 | aiffbbtat 41068 |
. . . 4
|
| 31 | 22, 30 | pm3.2i 471 |
. . 3
|
| 32 | dandysum2p2e4.o |
. . . . 5
| |
| 33 | 32 | biimpi 206 |
. . . 4
|
| 34 | dandysum2p2e4.j |
. . . . . . 7
| |
| 35 | dandysum2p2e4.k |
. . . . . . 7
| |
| 36 | 34, 35 | bothfbothsame 41067 |
. . . . . 6
|
| 37 | 36 | aisbnaxb 41078 |
. . . . 5
|
| 38 | dandysum2p2e4.h |
. . . . . . . 8
| |
| 39 | 38 | aisfina 41065 |
. . . . . . 7
|
| 40 | 39 | notatnand 41063 |
. . . . . 6
|
| 41 | dandysum2p2e4.c |
. . . . . 6
| |
| 42 | 40, 41 | mtbir 313 |
. . . . 5
|
| 43 | 37, 42 | pm3.2ni 899 |
. . . 4
|
| 44 | 33, 43 | aibnbaif 41074 |
. . 3
|
| 45 | 31, 44 | pm3.2i 471 |
. 2
|
| 46 | 45 | a1i 11 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-xor 1465 df-tru 1486 df-fal 1489 |
| This theorem is referenced by: mdandysum2p2e4 41166 |
| Copyright terms: Public domain | W3C validator |