![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an3an | Structured version Visualization version Unicode version |
Description: mp3an 1424 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
Ref | Expression |
---|---|
mp3an3an.1 |
![]() ![]() |
mp3an3an.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
mp3an3an.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
mp3an3an.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mp3an3an |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3an.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mp3an3an.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | mp3an3an.1 |
. . 3
![]() ![]() | |
4 | mp3an3an.4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | mp3an1 1411 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 2, 5 | syl2an 494 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: mp3an2ani 1431 nn0p1elfzo 12510 ftc1anclem6 33490 |
Copyright terms: Public domain | W3C validator |