![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an2ani | Structured version Visualization version Unicode version |
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
mp3an2ani.1 |
![]() ![]() |
mp3an2ani.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
mp3an2ani.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
mp3an2ani.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mp3an2ani |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2ani.1 |
. . 3
![]() ![]() | |
2 | mp3an2ani.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | mp3an2ani.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | mp3an2ani.4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | mp3an3an 1430 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | anabss5 857 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: 2lgsoddprmlem2 25134 isosctrlem1ALT 39170 odz2prm2pw 41475 lighneallem4 41527 |
Copyright terms: Public domain | W3C validator |