| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an2ani | Structured version Visualization version Unicode version | ||
| Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| mp3an2ani.1 |
|
| mp3an2ani.2 |
|
| mp3an2ani.3 |
|
| mp3an2ani.4 |
|
| Ref | Expression |
|---|---|
| mp3an2ani |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2ani.1 |
. . 3
| |
| 2 | mp3an2ani.2 |
. . 3
| |
| 3 | mp3an2ani.3 |
. . 3
| |
| 4 | mp3an2ani.4 |
. . 3
| |
| 5 | 1, 2, 3, 4 | mp3an3an 1430 |
. 2
|
| 6 | 5 | anabss5 857 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: 2lgsoddprmlem2 25134 isosctrlem1ALT 39170 odz2prm2pw 41475 lighneallem4 41527 |
| Copyright terms: Public domain | W3C validator |