![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpsylsyld | Structured version Visualization version Unicode version |
Description: Modus ponens combined with a double syllogism inference. (Contributed by Alan Sare, 22-Jul-2012.) |
Ref | Expression |
---|---|
mpsylsyld.1 |
![]() ![]() |
mpsylsyld.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
mpsylsyld.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpsylsyld |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpsylsyld.1 |
. . 3
![]() ![]() | |
2 | 1 | a1i 11 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | mpsylsyld.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | mpsylsyld.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | sylsyld 61 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: vk15.4j 38734 onfrALTlem3 38759 ee02an 38924 |
Copyright terms: Public domain | W3C validator |