Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem3 Structured version   Visualization version   Unicode version

Theorem onfrALTlem3 38759
Description: Lemma for onfrALT 38764. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem3  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  E. y  e.  ( a  i^i  x
) ( ( a  i^i  x )  i^i  y )  =  (/) ) )
Distinct variable groups:    y, a    x, y

Proof of Theorem onfrALTlem3
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 ssid 3624 . . 3  |-  ( a  i^i  x )  C_  ( a  i^i  x
)
2 simpr 477 . . . . 5  |-  ( ( x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->  -.  ( a  i^i  x
)  =  (/) )
32a1i 11 . . . 4  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  -.  (
a  i^i  x )  =  (/) ) )
4 df-ne 2795 . . . 4  |-  ( ( a  i^i  x )  =/=  (/)  <->  -.  ( a  i^i  x )  =  (/) )
53, 4syl6ibr 242 . . 3  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( a  i^i  x )  =/=  (/) ) )
6 pm3.2 463 . . 3  |-  ( ( a  i^i  x ) 
C_  ( a  i^i  x )  ->  (
( a  i^i  x
)  =/=  (/)  ->  (
( a  i^i  x
)  C_  ( a  i^i  x )  /\  (
a  i^i  x )  =/=  (/) ) ) )
71, 5, 6mpsylsyld 69 . 2  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( a  i^i  x ) 
C_  ( a  i^i  x )  /\  (
a  i^i  x )  =/=  (/) ) ) )
8 vex 3203 . . . . 5  |-  x  e. 
_V
98inex2 4800 . . . 4  |-  ( a  i^i  x )  e. 
_V
10 inss2 3834 . . . . . . 7  |-  ( a  i^i  x )  C_  x
11 simpl 473 . . . . . . . . . 10  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  a  C_  On )
12 simpl 473 . . . . . . . . . 10  |-  ( ( x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->  x  e.  a )
13 ssel 3597 . . . . . . . . . 10  |-  ( a 
C_  On  ->  ( x  e.  a  ->  x  e.  On ) )
1411, 12, 13syl2im 40 . . . . . . . . 9  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  x  e.  On ) )
15 eloni 5733 . . . . . . . . 9  |-  ( x  e.  On  ->  Ord  x )
1614, 15syl6 35 . . . . . . . 8  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  Ord  x
) )
17 ordwe 5736 . . . . . . . 8  |-  ( Ord  x  ->  _E  We  x )
1816, 17syl6 35 . . . . . . 7  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  _E  We  x ) )
19 wess 5101 . . . . . . 7  |-  ( ( a  i^i  x ) 
C_  x  ->  (  _E  We  x  ->  _E  We  ( a  i^i  x
) ) )
2010, 18, 19mpsylsyld 69 . . . . . 6  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  _E  We  ( a  i^i  x
) ) )
21 wefr 5104 . . . . . 6  |-  (  _E  We  ( a  i^i  x )  ->  _E  Fr  ( a  i^i  x
) )
2220, 21syl6 35 . . . . 5  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  _E  Fr  ( a  i^i  x
) ) )
23 dfepfr 5099 . . . . 5  |-  (  _E  Fr  ( a  i^i  x )  <->  A. b
( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) )
2422, 23syl6ib 241 . . . 4  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  A. b
( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) ) )
25 spsbc 3448 . . . 4  |-  ( ( a  i^i  x )  e.  _V  ->  ( A. b ( ( b 
C_  ( a  i^i  x )  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) )  ->  [. ( a  i^i  x )  /  b ]. ( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) ) )
269, 24, 25mpsylsyld 69 . . 3  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  [. (
a  i^i  x )  /  b ]. (
( b  C_  (
a  i^i  x )  /\  b  =/=  (/) )  ->  E. y  e.  b 
( b  i^i  y
)  =  (/) ) ) )
27 onfrALTlem5 38757 . . 3  |-  ( [. ( a  i^i  x
)  /  b ]. ( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) 
<->  ( ( ( a  i^i  x )  C_  ( a  i^i  x
)  /\  ( a  i^i  x )  =/=  (/) )  ->  E. y  e.  (
a  i^i  x )
( ( a  i^i  x )  i^i  y
)  =  (/) ) )
2826, 27syl6ib 241 . 2  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( ( a  i^i  x
)  C_  ( a  i^i  x )  /\  (
a  i^i  x )  =/=  (/) )  ->  E. y  e.  ( a  i^i  x
) ( ( a  i^i  x )  i^i  y )  =  (/) ) ) )
297, 28mpdd 43 1  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  E. y  e.  ( a  i^i  x
) ( ( a  i^i  x )  i^i  y )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200   [.wsbc 3435    i^i cin 3573    C_ wss 3574   (/)c0 3915    _E cep 5028    Fr wfr 5070    We wwe 5072   Ord word 5722   Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by:  onfrALTlem2  38761
  Copyright terms: Public domain W3C validator