| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nabctnabc | Structured version Visualization version Unicode version | ||
| Description: not ( a -> ( b /\ c ) ) we can show: not a implies ( b /\ c ). (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| Ref | Expression |
|---|---|
| nabctnabc.1 |
|
| Ref | Expression |
|---|---|
| nabctnabc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nabctnabc.1 |
. . . . . . . 8
| |
| 2 | pm4.61 442 |
. . . . . . . . 9
| |
| 3 | 2 | biimpi 206 |
. . . . . . . 8
|
| 4 | 1, 3 | ax-mp 5 |
. . . . . . 7
|
| 5 | 4 | simpli 474 |
. . . . . 6
|
| 6 | 4 | simpri 478 |
. . . . . 6
|
| 7 | 5, 6 | 2th 254 |
. . . . 5
|
| 8 | bicom 212 |
. . . . . 6
| |
| 9 | 8 | biimpi 206 |
. . . . 5
|
| 10 | 7, 9 | ax-mp 5 |
. . . 4
|
| 11 | 10 | biimpi 206 |
. . 3
|
| 12 | 11 | con3i 150 |
. 2
|
| 13 | 12 | notnotrd 128 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |