![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > notnotrd | Structured version Visualization version Unicode version |
Description: Deduction associated with
notnotr 125 and notnotri 126. Double negation
elimination rule. A translation of the natural deduction rule ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
notnotrd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
notnotrd |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotrd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | notnotr 125 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 17 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: condan 835 efald 1504 necon1ai 2821 supgtoreq 8376 konigthlem 9390 indpi 9729 sqrmo 13992 axtgupdim2 25370 ncoltgdim2 25460 ex-natded5.13 27272 2sqcoprm 29647 bnj1204 31080 knoppndvlem10 32512 supxrgere 39549 supxrgelem 39553 supxrge 39554 iccdifprioo 39742 icccncfext 40100 stirlinglem5 40295 sge0repnf 40603 sge0split 40626 nnfoctbdjlem 40672 nabctnabc 41098 |
Copyright terms: Public domain | W3C validator |