| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nanbi | Structured version Visualization version Unicode version | ||
| Description: Show equivalence between the biconditional and the Nicod version. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof shortened by Wolf Lammen, 27-Jun-2020.) |
| Ref | Expression |
|---|---|
| nanbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi3 994 |
. . 3
| |
| 2 | df-or 385 |
. . 3
| |
| 3 | df-nan 1448 |
. . . . 5
| |
| 4 | 3 | bicomi 214 |
. . . 4
|
| 5 | nannot 1453 |
. . . . 5
| |
| 6 | nannot 1453 |
. . . . 5
| |
| 7 | 5, 6 | anbi12i 733 |
. . . 4
|
| 8 | 4, 7 | imbi12i 340 |
. . 3
|
| 9 | 1, 2, 8 | 3bitri 286 |
. 2
|
| 10 | nannan 1451 |
. 2
| |
| 11 | 9, 10 | bitr4i 267 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-nan 1448 |
| This theorem is referenced by: nic-dfim 1594 nic-dfneg 1595 |
| Copyright terms: Public domain | W3C validator |