| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nannan | Structured version Visualization version Unicode version | ||
| Description: Lemma for handling nested 'nand's. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof shortened by Wolf Lammen, 7-Mar-2020.) |
| Ref | Expression |
|---|---|
| nannan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imnan 438 |
. 2
| |
| 2 | nanan 1449 |
. . 3
| |
| 3 | 2 | imbi2i 326 |
. 2
|
| 4 | df-nan 1448 |
. 2
| |
| 5 | 1, 3, 4 | 3bitr4ri 293 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-nan 1448 |
| This theorem is referenced by: nanim 1452 nanbi 1454 nic-mp 1596 nic-ax 1598 waj-ax 32413 lukshef-ax2 32414 arg-ax 32415 rp-fakenanass 37860 |
| Copyright terms: Public domain | W3C validator |