MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nexdOLD Structured version   Visualization version   Unicode version

Theorem nexdOLD 2198
Description: Obsolete proof of nexd 2089 as of 6-Oct-2021. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nexdOLD.1  |-  F/ x ph
nexdOLD.2  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
nexdOLD  |-  ( ph  ->  -.  E. x ps )

Proof of Theorem nexdOLD
StepHypRef Expression
1 nexdOLD.1 . . 3  |-  F/ x ph
21nfriOLD 2189 . 2  |-  ( ph  ->  A. x ph )
3 nexdOLD.2 . 2  |-  ( ph  ->  -.  ps )
42, 3nexdh 1792 1  |-  ( ph  ->  -.  E. x ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   E.wex 1704   F/wnfOLD 1709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-ex 1705  df-nfOLD 1721
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator