MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfan1OLD Structured version   Visualization version   Unicode version

Theorem nfan1OLD 2236
Description: Obsolete proof of nfan1 2068 as of 6-Oct-2021. (Contributed by Mario Carneiro, 3-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfan1OLD.1  |-  F/ x ph
nfan1OLD.2  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfan1OLD  |-  F/ x
( ph  /\  ps )

Proof of Theorem nfan1OLD
StepHypRef Expression
1 nfan1OLD.2 . . . . 5  |-  ( ph  ->  F/ x ps )
21nfrdOLD 2190 . . . 4  |-  ( ph  ->  ( ps  ->  A. x ps ) )
32imdistani 726 . . 3  |-  ( (
ph  /\  ps )  ->  ( ph  /\  A. x ps ) )
4 nfan1OLD.1 . . . 4  |-  F/ x ph
5419.28OLD 2235 . . 3  |-  ( A. x ( ph  /\  ps )  <->  ( ph  /\  A. x ps ) )
63, 5sylibr 224 . 2  |-  ( (
ph  /\  ps )  ->  A. x ( ph  /\ 
ps ) )
76nfiOLD 1734 1  |-  F/ x
( ph  /\  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481   F/wnfOLD 1709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-nfOLD 1721
This theorem is referenced by:  nfanOLDOLD  2237
  Copyright terms: Public domain W3C validator