MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcdeq Structured version   Visualization version   Unicode version

Theorem nfcdeq 3432
Description: If we have a conditional equality proof, where  ph is  ph ( x ) and  ps is  ph (
y ), and  ph (
x ) in fact does not have  x free in it according to  F/, then  ph ( x )  <->  ph ( y ) unconditionally. This proves that  F/ x ph is actually a not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfcdeq.1  |-  F/ x ph
nfcdeq.2  |- CondEq ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
nfcdeq  |-  ( ph  <->  ps )
Distinct variable groups:    ps, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem nfcdeq
StepHypRef Expression
1 nfcdeq.1 . . 3  |-  F/ x ph
21sbf 2380 . 2  |-  ( [ y  /  x ] ph 
<-> 
ph )
3 nfv 1843 . . 3  |-  F/ x ps
4 nfcdeq.2 . . . 4  |- CondEq ( x  =  y  ->  ( ph 
<->  ps ) )
54cdeqri 3421 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
63, 5sbie 2408 . 2  |-  ( [ y  /  x ] ph 
<->  ps )
72, 6bitr3i 266 1  |-  ( ph  <->  ps )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196   F/wnf 1708   [wsb 1880  CondEqwcdeq 3418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-sb 1881  df-cdeq 3419
This theorem is referenced by:  nfccdeq  3433
  Copyright terms: Public domain W3C validator