![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfntOLDOLD | Structured version Visualization version Unicode version |
Description: Obsolete proof of nfnt 1782 as of 3-Nov-2021. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 28-Dec-2017.) (Revised by BJ, 24-Jul-2019.) df-nf 1710 changed. (Revised by Wolf Lammen, 4-Oct-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfntOLDOLD |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 136 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | alimi 1739 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | orim1i 539 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | pm1.4 401 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | syl 17 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | nf3 1712 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | nf3 1712 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 5, 6, 7 | 3imtr4i 281 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
This theorem depends on definitions: df-bi 197 df-or 385 df-ex 1705 df-nf 1710 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |