![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfnth | Structured version Visualization version Unicode version |
Description: No variable is (effectively) free in a non-theorem. (Contributed by Mario Carneiro, 6-Dec-2016.) df-nf 1710 changed. (Revised by Wolf Lammen, 12-Sep-2021.) |
Ref | Expression |
---|---|
nfnth.1 |
![]() ![]() ![]() |
Ref | Expression |
---|---|
nfnth |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfntht2 1720 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfnth.1 |
. 2
![]() ![]() ![]() | |
3 | 1, 2 | mpg 1724 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 |
This theorem depends on definitions: df-bi 197 df-or 385 df-ex 1705 df-nf 1710 |
This theorem is referenced by: nffal 1732 nd1 9409 nd2 9410 |
Copyright terms: Public domain | W3C validator |