MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsbc1d Structured version   Visualization version   Unicode version

Theorem nfsbc1d 3453
Description: Deduction version of nfsbc1 3454. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypothesis
Ref Expression
nfsbc1d.2  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nfsbc1d  |-  ( ph  ->  F/ x [. A  /  x ]. ps )

Proof of Theorem nfsbc1d
StepHypRef Expression
1 df-sbc 3436 . 2  |-  ( [. A  /  x ]. ps  <->  A  e.  { x  |  ps } )
2 nfsbc1d.2 . . 3  |-  ( ph  -> 
F/_ x A )
3 nfab1 2766 . . . 4  |-  F/_ x { x  |  ps }
43a1i 11 . . 3  |-  ( ph  -> 
F/_ x { x  |  ps } )
52, 4nfeld 2773 . 2  |-  ( ph  ->  F/ x  A  e. 
{ x  |  ps } )
61, 5nfxfrd 1780 1  |-  ( ph  ->  F/ x [. A  /  x ]. ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   F/wnf 1708    e. wcel 1990   {cab 2608   F/_wnfc 2751   [.wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-sbc 3436
This theorem is referenced by:  nfsbc1  3454  nfcsb1d  3547
  Copyright terms: Public domain W3C validator