Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm10.251 Structured version   Visualization version   Unicode version

Theorem pm10.251 38559
Description: Theorem *10.251 in [WhiteheadRussell] p. 149. (Contributed by Andrew Salmon, 17-Jun-2011.)
Assertion
Ref Expression
pm10.251  |-  ( A. x  -.  ph  ->  -.  A. x ph )

Proof of Theorem pm10.251
StepHypRef Expression
1 alnex 1706 . 2  |-  ( A. x  -.  ph  <->  -.  E. x ph )
2 19.2 1892 . . 3  |-  ( A. x ph  ->  E. x ph )
32con3i 150 . 2  |-  ( -. 
E. x ph  ->  -. 
A. x ph )
41, 3sylbi 207 1  |-  ( A. x  -.  ph  ->  -.  A. x ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-6 1888
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator