| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61da3ne | Structured version Visualization version Unicode version | ||
| Description: Deduction eliminating three inequalities in an antecedent. (Contributed by NM, 15-Jun-2013.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| pm2.61da3ne.1 |
|
| pm2.61da3ne.2 |
|
| pm2.61da3ne.3 |
|
| pm2.61da3ne.4 |
|
| Ref | Expression |
|---|---|
| pm2.61da3ne |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61da3ne.2 |
. 2
| |
| 2 | pm2.61da3ne.3 |
. 2
| |
| 3 | pm2.61da3ne.1 |
. . . . 5
| |
| 4 | 3 | a1d 25 |
. . . 4
|
| 5 | pm2.61da3ne.4 |
. . . . . 6
| |
| 6 | 5 | 3exp2 1285 |
. . . . 5
|
| 7 | 6 | imp4b 613 |
. . . 4
|
| 8 | 4, 7 | pm2.61dane 2881 |
. . 3
|
| 9 | 8 | imp 445 |
. 2
|
| 10 | 1, 2, 9 | pm2.61da2ne 2882 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-ne 2795 |
| This theorem is referenced by: trljco 36028 dvh4dimN 36736 |
| Copyright terms: Public domain | W3C validator |