Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trljco Structured version   Visualization version   Unicode version

Theorem trljco 36028
Description: Trace joined with trace of composition. (Contributed by NM, 15-Jun-2013.)
Hypotheses
Ref Expression
trljco.j  |-  .\/  =  ( join `  K )
trljco.h  |-  H  =  ( LHyp `  K
)
trljco.t  |-  T  =  ( ( LTrn `  K
) `  W )
trljco.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trljco  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( R `  F )  .\/  ( R `  ( F  o.  G )
) )  =  ( ( R `  F
)  .\/  ( R `  G ) ) )

Proof of Theorem trljco
StepHypRef Expression
1 coeq1 5279 . . . . 5  |-  ( F  =  (  _I  |`  ( Base `  K ) )  ->  ( F  o.  G )  =  ( (  _I  |`  ( Base `  K ) )  o.  G ) )
2 eqid 2622 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
3 trljco.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
4 trljco.t . . . . . . . 8  |-  T  =  ( ( LTrn `  K
) `  W )
52, 3, 4ltrn1o 35410 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
653adant2 1080 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  G :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
7 f1of 6137 . . . . . 6  |-  ( G : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  G : ( Base `  K ) --> ( Base `  K ) )
8 fcoi2 6079 . . . . . 6  |-  ( G : ( Base `  K
) --> ( Base `  K
)  ->  ( (  _I  |`  ( Base `  K
) )  o.  G
)  =  G )
96, 7, 83syl 18 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( (  _I  |`  ( Base `  K
) )  o.  G
)  =  G )
101, 9sylan9eqr 2678 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  (  _I  |`  ( Base `  K ) ) )  ->  ( F  o.  G )  =  G )
1110fveq2d 6195 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  (  _I  |`  ( Base `  K ) ) )  ->  ( R `  ( F  o.  G
) )  =  ( R `  G ) )
1211oveq2d 6666 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  (  _I  |`  ( Base `  K ) ) )  ->  ( ( R `  F )  .\/  ( R `  ( F  o.  G )
) )  =  ( ( R `  F
)  .\/  ( R `  G ) ) )
13 simp1l 1085 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  K  e.  HL )
14 hllat 34650 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
1513, 14syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  K  e.  Lat )
16 trljco.r . . . . . . . 8  |-  R  =  ( ( trL `  K
) `  W )
172, 3, 4, 16trlcl 35451 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  (
Base `  K )
)
18173adant3 1081 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( R `  F )  e.  (
Base `  K )
)
19 trljco.j . . . . . . 7  |-  .\/  =  ( join `  K )
202, 19latjidm 17074 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( R `  F )  e.  ( Base `  K
) )  ->  (
( R `  F
)  .\/  ( R `  F ) )  =  ( R `  F
) )
2115, 18, 20syl2anc 693 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( R `  F )  .\/  ( R `  F
) )  =  ( R `  F ) )
22 hlol 34648 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OL )
2313, 22syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  K  e.  OL )
24 eqid 2622 . . . . . . 7  |-  ( 0.
`  K )  =  ( 0. `  K
)
252, 19, 24olj01 34512 . . . . . 6  |-  ( ( K  e.  OL  /\  ( R `  F )  e.  ( Base `  K
) )  ->  (
( R `  F
)  .\/  ( 0. `  K ) )  =  ( R `  F
) )
2623, 18, 25syl2anc 693 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( R `  F )  .\/  ( 0. `  K
) )  =  ( R `  F ) )
2721, 26eqtr4d 2659 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( R `  F )  .\/  ( R `  F
) )  =  ( ( R `  F
)  .\/  ( 0. `  K ) ) )
2827adantr 481 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  G  =  (  _I  |`  ( Base `  K ) ) )  ->  ( ( R `  F )  .\/  ( R `  F
) )  =  ( ( R `  F
)  .\/  ( 0. `  K ) ) )
29 coeq2 5280 . . . . . 6  |-  ( G  =  (  _I  |`  ( Base `  K ) )  ->  ( F  o.  G )  =  ( F  o.  (  _I  |`  ( Base `  K
) ) ) )
302, 3, 4ltrn1o 35410 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
31303adant3 1081 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
32 f1of 6137 . . . . . . 7  |-  ( F : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  F : ( Base `  K ) --> ( Base `  K ) )
33 fcoi1 6078 . . . . . . 7  |-  ( F : ( Base `  K
) --> ( Base `  K
)  ->  ( F  o.  (  _I  |`  ( Base `  K ) ) )  =  F )
3431, 32, 333syl 18 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  o.  (  _I  |`  ( Base `  K ) ) )  =  F )
3529, 34sylan9eqr 2678 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  G  =  (  _I  |`  ( Base `  K ) ) )  ->  ( F  o.  G )  =  F )
3635fveq2d 6195 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  G  =  (  _I  |`  ( Base `  K ) ) )  ->  ( R `  ( F  o.  G
) )  =  ( R `  F ) )
3736oveq2d 6666 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  G  =  (  _I  |`  ( Base `  K ) ) )  ->  ( ( R `  F )  .\/  ( R `  ( F  o.  G )
) )  =  ( ( R `  F
)  .\/  ( R `  F ) ) )
382, 24, 3, 4, 16trlid0b 35465 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( G  =  (  _I  |`  ( Base `  K ) )  <-> 
( R `  G
)  =  ( 0.
`  K ) ) )
39383adant2 1080 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( G  =  (  _I  |`  ( Base `  K ) )  <-> 
( R `  G
)  =  ( 0.
`  K ) ) )
4039biimpa 501 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  G  =  (  _I  |`  ( Base `  K ) ) )  ->  ( R `  G )  =  ( 0. `  K ) )
4140oveq2d 6666 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  G  =  (  _I  |`  ( Base `  K ) ) )  ->  ( ( R `  F )  .\/  ( R `  G
) )  =  ( ( R `  F
)  .\/  ( 0. `  K ) ) )
4228, 37, 413eqtr4d 2666 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  G  =  (  _I  |`  ( Base `  K ) ) )  ->  ( ( R `  F )  .\/  ( R `  ( F  o.  G )
) )  =  ( ( R `  F
)  .\/  ( R `  G ) ) )
43 eqid 2622 . . 3  |-  ( le
`  K )  =  ( le `  K
)
4415adantr 481 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =  ( R `  G ) )  ->  K  e.  Lat )
45 simp1 1061 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( K  e.  HL  /\  W  e.  H ) )
463, 4ltrnco 36007 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  o.  G )  e.  T
)
472, 3, 4, 16trlcl 35451 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  o.  G )  e.  T
)  ->  ( R `  ( F  o.  G
) )  e.  (
Base `  K )
)
4845, 46, 47syl2anc 693 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( R `  ( F  o.  G
) )  e.  (
Base `  K )
)
492, 19latjcl 17051 . . . . 5  |-  ( ( K  e.  Lat  /\  ( R `  F )  e.  ( Base `  K
)  /\  ( R `  ( F  o.  G
) )  e.  (
Base `  K )
)  ->  ( ( R `  F )  .\/  ( R `  ( F  o.  G )
) )  e.  (
Base `  K )
)
5015, 18, 48, 49syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( R `  F )  .\/  ( R `  ( F  o.  G )
) )  e.  (
Base `  K )
)
5150adantr 481 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( ( R `  F )  .\/  ( R `  ( F  o.  G ) ) )  e.  ( Base `  K
) )
522, 3, 4, 16trlcl 35451 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  e.  (
Base `  K )
)
53523adant2 1080 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( R `  G )  e.  (
Base `  K )
)
542, 19latjcl 17051 . . . . 5  |-  ( ( K  e.  Lat  /\  ( R `  F )  e.  ( Base `  K
)  /\  ( R `  G )  e.  (
Base `  K )
)  ->  ( ( R `  F )  .\/  ( R `  G
) )  e.  (
Base `  K )
)
5515, 18, 53, 54syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( R `  F )  .\/  ( R `  G
) )  e.  (
Base `  K )
)
5655adantr 481 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( ( R `  F )  .\/  ( R `  G )
)  e.  ( Base `  K ) )
572, 43, 19latlej1 17060 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( R `  F )  e.  ( Base `  K
)  /\  ( R `  G )  e.  (
Base `  K )
)  ->  ( R `  F ) ( le
`  K ) ( ( R `  F
)  .\/  ( R `  G ) ) )
5815, 18, 53, 57syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( R `  F ) ( le
`  K ) ( ( R `  F
)  .\/  ( R `  G ) ) )
5943, 19, 3, 4, 16trlco 36015 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( R `  ( F  o.  G
) ) ( le
`  K ) ( ( R `  F
)  .\/  ( R `  G ) ) )
602, 43, 19latjle12 17062 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( R `  F )  e.  (
Base `  K )  /\  ( R `  ( F  o.  G )
)  e.  ( Base `  K )  /\  (
( R `  F
)  .\/  ( R `  G ) )  e.  ( Base `  K
) ) )  -> 
( ( ( R `
 F ) ( le `  K ) ( ( R `  F )  .\/  ( R `  G )
)  /\  ( R `  ( F  o.  G
) ) ( le
`  K ) ( ( R `  F
)  .\/  ( R `  G ) ) )  <-> 
( ( R `  F )  .\/  ( R `  ( F  o.  G ) ) ) ( le `  K
) ( ( R `
 F )  .\/  ( R `  G ) ) ) )
6115, 18, 48, 55, 60syl13anc 1328 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( (
( R `  F
) ( le `  K ) ( ( R `  F ) 
.\/  ( R `  G ) )  /\  ( R `  ( F  o.  G ) ) ( le `  K
) ( ( R `
 F )  .\/  ( R `  G ) ) )  <->  ( ( R `  F )  .\/  ( R `  ( F  o.  G )
) ) ( le
`  K ) ( ( R `  F
)  .\/  ( R `  G ) ) ) )
6258, 59, 61mpbi2and 956 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( R `  F )  .\/  ( R `  ( F  o.  G )
) ) ( le
`  K ) ( ( R `  F
)  .\/  ( R `  G ) ) )
6362adantr 481 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( ( R `  F )  .\/  ( R `  ( F  o.  G ) ) ) ( le `  K
) ( ( R `
 F )  .\/  ( R `  G ) ) )
64 simpr 477 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( R `  F
)  =  ( R `
 G ) )
6564oveq2d 6666 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( ( R `  F )  .\/  ( R `  F )
)  =  ( ( R `  F ) 
.\/  ( R `  G ) ) )
662, 43, 19latlej1 17060 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( R `  F )  e.  ( Base `  K
)  /\  ( R `  ( F  o.  G
) )  e.  (
Base `  K )
)  ->  ( R `  F ) ( le
`  K ) ( ( R `  F
)  .\/  ( R `  ( F  o.  G
) ) ) )
6715, 18, 48, 66syl3anc 1326 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( R `  F ) ( le
`  K ) ( ( R `  F
)  .\/  ( R `  ( F  o.  G
) ) ) )
6821, 67eqbrtrd 4675 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( R `  F )  .\/  ( R `  F
) ) ( le
`  K ) ( ( R `  F
)  .\/  ( R `  ( F  o.  G
) ) ) )
6968adantr 481 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( ( R `  F )  .\/  ( R `  F )
) ( le `  K ) ( ( R `  F ) 
.\/  ( R `  ( F  o.  G
) ) ) )
7065, 69eqbrtrrd 4677 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( ( R `  F )  .\/  ( R `  G )
) ( le `  K ) ( ( R `  F ) 
.\/  ( R `  ( F  o.  G
) ) ) )
712, 43, 44, 51, 56, 63, 70latasymd 17057 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( ( R `  F )  .\/  ( R `  ( F  o.  G ) ) )  =  ( ( R `
 F )  .\/  ( R `  G ) ) )
7262adantr 481 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  =/=  (  _I  |`  ( Base `  K ) )  /\  G  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  F )  =/=  ( R `  G
) ) )  -> 
( ( R `  F )  .\/  ( R `  ( F  o.  G ) ) ) ( le `  K
) ( ( R `
 F )  .\/  ( R `  G ) ) )
73 simpl1l 1112 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  =/=  (  _I  |`  ( Base `  K ) )  /\  G  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  F )  =/=  ( R `  G
) ) )  ->  K  e.  HL )
74 simpl1 1064 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  =/=  (  _I  |`  ( Base `  K ) )  /\  G  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  F )  =/=  ( R `  G
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
75 simpl2 1065 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  =/=  (  _I  |`  ( Base `  K ) )  /\  G  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  F )  =/=  ( R `  G
) ) )  ->  F  e.  T )
76 simpr1 1067 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  =/=  (  _I  |`  ( Base `  K ) )  /\  G  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  F )  =/=  ( R `  G
) ) )  ->  F  =/=  (  _I  |`  ( Base `  K ) ) )
77 eqid 2622 . . . . . 6  |-  ( Atoms `  K )  =  (
Atoms `  K )
782, 77, 3, 4, 16trlnidat 35460 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  ( Base `  K
) ) )  -> 
( R `  F
)  e.  ( Atoms `  K ) )
7974, 75, 76, 78syl3anc 1326 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  =/=  (  _I  |`  ( Base `  K ) )  /\  G  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  F )  =/=  ( R `  G
) ) )  -> 
( R `  F
)  e.  ( Atoms `  K ) )
80 simpl3 1066 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  =/=  (  _I  |`  ( Base `  K ) )  /\  G  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  F )  =/=  ( R `  G
) ) )  ->  G  e.  T )
8175, 80jca 554 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  =/=  (  _I  |`  ( Base `  K ) )  /\  G  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  F )  =/=  ( R `  G
) ) )  -> 
( F  e.  T  /\  G  e.  T
) )
82 simpr3 1069 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  =/=  (  _I  |`  ( Base `  K ) )  /\  G  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  F )  =/=  ( R `  G
) ) )  -> 
( R `  F
)  =/=  ( R `
 G ) )
8377, 3, 4, 16trlcoat 36011 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( R `  ( F  o.  G ) )  e.  ( Atoms `  K )
)
8474, 81, 82, 83syl3anc 1326 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  =/=  (  _I  |`  ( Base `  K ) )  /\  G  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  F )  =/=  ( R `  G
) ) )  -> 
( R `  ( F  o.  G )
)  e.  ( Atoms `  K ) )
85 simpr2 1068 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  =/=  (  _I  |`  ( Base `  K ) )  /\  G  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  F )  =/=  ( R `  G
) ) )  ->  G  =/=  (  _I  |`  ( Base `  K ) ) )
862, 3, 4, 16trlcone 36016 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  F
)  =/=  ( R `
 G )  /\  G  =/=  (  _I  |`  ( Base `  K ) ) ) )  ->  ( R `  F )  =/=  ( R `  ( F  o.  G )
) )
8774, 81, 82, 85, 86syl112anc 1330 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  =/=  (  _I  |`  ( Base `  K ) )  /\  G  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  F )  =/=  ( R `  G
) ) )  -> 
( R `  F
)  =/=  ( R `
 ( F  o.  G ) ) )
882, 77, 3, 4, 16trlnidat 35460 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  G  =/=  (  _I  |`  ( Base `  K
) ) )  -> 
( R `  G
)  e.  ( Atoms `  K ) )
8974, 80, 85, 88syl3anc 1326 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  =/=  (  _I  |`  ( Base `  K ) )  /\  G  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  F )  =/=  ( R `  G
) ) )  -> 
( R `  G
)  e.  ( Atoms `  K ) )
9043, 19, 77ps-1 34763 . . . 4  |-  ( ( K  e.  HL  /\  ( ( R `  F )  e.  (
Atoms `  K )  /\  ( R `  ( F  o.  G ) )  e.  ( Atoms `  K
)  /\  ( R `  F )  =/=  ( R `  ( F  o.  G ) ) )  /\  ( ( R `
 F )  e.  ( Atoms `  K )  /\  ( R `  G
)  e.  ( Atoms `  K ) ) )  ->  ( ( ( R `  F ) 
.\/  ( R `  ( F  o.  G
) ) ) ( le `  K ) ( ( R `  F )  .\/  ( R `  G )
)  <->  ( ( R `
 F )  .\/  ( R `  ( F  o.  G ) ) )  =  ( ( R `  F ) 
.\/  ( R `  G ) ) ) )
9173, 79, 84, 87, 79, 89, 90syl132anc 1344 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  =/=  (  _I  |`  ( Base `  K ) )  /\  G  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  F )  =/=  ( R `  G
) ) )  -> 
( ( ( R `
 F )  .\/  ( R `  ( F  o.  G ) ) ) ( le `  K ) ( ( R `  F ) 
.\/  ( R `  G ) )  <->  ( ( R `  F )  .\/  ( R `  ( F  o.  G )
) )  =  ( ( R `  F
)  .\/  ( R `  G ) ) ) )
9272, 91mpbid 222 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  =/=  (  _I  |`  ( Base `  K ) )  /\  G  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  F )  =/=  ( R `  G
) ) )  -> 
( ( R `  F )  .\/  ( R `  ( F  o.  G ) ) )  =  ( ( R `
 F )  .\/  ( R `  G ) ) )
9312, 42, 71, 92pm2.61da3ne 2883 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( R `  F )  .\/  ( R `  ( F  o.  G )
) )  =  ( ( R `  F
)  .\/  ( R `  G ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653    _I cid 5023    |` cres 5116    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   0.cp0 17037   Latclat 17045   OLcol 34461   Atomscatm 34550   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   trLctrl 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446
This theorem is referenced by:  trljco2  36029  cdlemkid1  36210
  Copyright terms: Public domain W3C validator