MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleleqALT Structured version   Visualization version   Unicode version

Theorem raleleqALT 3157
Description: Alternate proof of raleleq 3156 using ralel 2923, being longer and using more axioms. (Contributed by AV, 30-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
raleleqALT  |-  ( A  =  B  ->  A. x  e.  A  x  e.  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem raleleqALT
StepHypRef Expression
1 ralel 2923 . 2  |-  A. x  e.  B  x  e.  B
2 id 22 . . 3  |-  ( A  =  B  ->  A  =  B )
32raleqdv 3144 . 2  |-  ( A  =  B  ->  ( A. x  e.  A  x  e.  B  <->  A. x  e.  B  x  e.  B ) )
41, 3mpbiri 248 1  |-  ( A  =  B  ->  A. x  e.  A  x  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator