MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralf0OLD Structured version   Visualization version   Unicode version

Theorem ralf0OLD 4079
Description: Obsolete proof of ralf0 4078 as of 14-Jul-2021. (Contributed by NM, 26-Nov-2005.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
ralf0.1  |-  -.  ph
Assertion
Ref Expression
ralf0OLD  |-  ( A. x  e.  A  ph  <->  A  =  (/) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem ralf0OLD
StepHypRef Expression
1 ralf0.1 . . . . 5  |-  -.  ph
2 con3 149 . . . . 5  |-  ( ( x  e.  A  ->  ph )  ->  ( -. 
ph  ->  -.  x  e.  A ) )
31, 2mpi 20 . . . 4  |-  ( ( x  e.  A  ->  ph )  ->  -.  x  e.  A )
43alimi 1739 . . 3  |-  ( A. x ( x  e.  A  ->  ph )  ->  A. x  -.  x  e.  A )
5 df-ral 2917 . . 3  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
6 eq0 3929 . . 3  |-  ( A  =  (/)  <->  A. x  -.  x  e.  A )
74, 5, 63imtr4i 281 . 2  |-  ( A. x  e.  A  ph  ->  A  =  (/) )
8 rzal 4073 . 2  |-  ( A  =  (/)  ->  A. x  e.  A  ph )
97, 8impbii 199 1  |-  ( A. x  e.  A  ph  <->  A  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196   A.wal 1481    = wceq 1483    e. wcel 1990   A.wral 2912   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator