| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximd2a | Structured version Visualization version Unicode version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
| Ref | Expression |
|---|---|
| reximd2a.1 |
|
| reximd2a.2 |
|
| reximd2a.3 |
|
| reximd2a.4 |
|
| Ref | Expression |
|---|---|
| reximd2a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximd2a.4 |
. 2
| |
| 2 | reximd2a.1 |
. . . 4
| |
| 3 | reximd2a.2 |
. . . . . 6
| |
| 4 | reximd2a.3 |
. . . . . 6
| |
| 5 | 3, 4 | jca 554 |
. . . . 5
|
| 6 | 5 | expl 648 |
. . . 4
|
| 7 | 2, 6 | eximd 2085 |
. . 3
|
| 8 | df-rex 2918 |
. . 3
| |
| 9 | df-rex 2918 |
. . 3
| |
| 10 | 7, 8, 9 | 3imtr4g 285 |
. 2
|
| 11 | 1, 10 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-nf 1710 df-rex 2918 |
| This theorem is referenced by: locfinreflem 29907 |
| Copyright terms: Public domain | W3C validator |