Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-misc1-frege Structured version   Visualization version   Unicode version

Theorem rp-misc1-frege 38090
Description: Double-use of ax-frege2 38085. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
rp-misc1-frege  |-  ( ( ( ph  ->  ( ps  ->  ch ) )  ->  ( ph  ->  ps ) )  ->  (
( ph  ->  ( ps 
->  ch ) )  -> 
( ph  ->  ch )
) )

Proof of Theorem rp-misc1-frege
StepHypRef Expression
1 ax-frege2 38085 . 2  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  (
( ph  ->  ps )  ->  ( ph  ->  ch ) ) )
2 ax-frege2 38085 . 2  |-  ( ( ( ph  ->  ( ps  ->  ch ) )  ->  ( ( ph  ->  ps )  ->  ( ph  ->  ch ) ) )  ->  ( (
( ph  ->  ( ps 
->  ch ) )  -> 
( ph  ->  ps )
)  ->  ( ( ph  ->  ( ps  ->  ch ) )  ->  ( ph  ->  ch ) ) ) )
31, 2ax-mp 5 1  |-  ( ( ( ph  ->  ( ps  ->  ch ) )  ->  ( ph  ->  ps ) )  ->  (
( ph  ->  ( ps 
->  ch ) )  -> 
( ph  ->  ch )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege2 38085
This theorem is referenced by:  rp-4frege  38096
  Copyright terms: Public domain W3C validator