Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-frege24 Structured version   Visualization version   Unicode version

Theorem rp-frege24 38091
Description: Introducing an embedded antecedent. Alternate proof for frege24 38109. Closed form for a1d 25. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
rp-frege24  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ( ch 
->  ps ) ) )

Proof of Theorem rp-frege24
StepHypRef Expression
1 rp-simp2-frege 38086 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  ps ) ) )
2 ax-frege2 38085 . 2  |-  ( (
ph  ->  ( ps  ->  ( ch  ->  ps )
) )  ->  (
( ph  ->  ps )  ->  ( ph  ->  ( ch  ->  ps ) ) ) )
31, 2ax-mp 5 1  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ( ch 
->  ps ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 38084  ax-frege2 38085
This theorem is referenced by:  rp-7frege  38095  rp-frege25  38099
  Copyright terms: Public domain W3C validator