Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-simp2-frege Structured version   Visualization version   Unicode version

Theorem rp-simp2-frege 38086
Description: Simplification of triple conjunction. Compare with simp2 1062. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
rp-simp2-frege  |-  ( ph  ->  ( ps  ->  ( ch  ->  ps ) ) )

Proof of Theorem rp-simp2-frege
StepHypRef Expression
1 ax-frege1 38084 . 2  |-  ( ps 
->  ( ch  ->  ps ) )
2 ax-frege1 38084 . 2  |-  ( ( ps  ->  ( ch  ->  ps ) )  -> 
( ph  ->  ( ps 
->  ( ch  ->  ps ) ) ) )
31, 2ax-mp 5 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ps ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 38084
This theorem is referenced by:  rp-simp2  38087  rp-frege24  38091  rp-4frege  38096
  Copyright terms: Public domain W3C validator