MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspct Structured version   Visualization version   Unicode version

Theorem rspct 3302
Description: A closed version of rspc 3303. (Contributed by Andrew Salmon, 6-Jun-2011.)
Hypothesis
Ref Expression
rspct.1  |-  F/ x ps
Assertion
Ref Expression
rspct  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  ps ) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem rspct
StepHypRef Expression
1 df-ral 2917 . . . 4  |-  ( A. x  e.  B  ph  <->  A. x
( x  e.  B  ->  ph ) )
2 eleq1 2689 . . . . . . . . . 10  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
32adantr 481 . . . . . . . . 9  |-  ( ( x  =  A  /\  ( ph  <->  ps ) )  -> 
( x  e.  B  <->  A  e.  B ) )
4 simpr 477 . . . . . . . . 9  |-  ( ( x  =  A  /\  ( ph  <->  ps ) )  -> 
( ph  <->  ps ) )
53, 4imbi12d 334 . . . . . . . 8  |-  ( ( x  =  A  /\  ( ph  <->  ps ) )  -> 
( ( x  e.  B  ->  ph )  <->  ( A  e.  B  ->  ps )
) )
65ex 450 . . . . . . 7  |-  ( x  =  A  ->  (
( ph  <->  ps )  ->  (
( x  e.  B  ->  ph )  <->  ( A  e.  B  ->  ps )
) ) )
76a2i 14 . . . . . 6  |-  ( ( x  =  A  -> 
( ph  <->  ps ) )  -> 
( x  =  A  ->  ( ( x  e.  B  ->  ph )  <->  ( A  e.  B  ->  ps ) ) ) )
87alimi 1739 . . . . 5  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  A. x
( x  =  A  ->  ( ( x  e.  B  ->  ph )  <->  ( A  e.  B  ->  ps ) ) ) )
9 nfv 1843 . . . . . . 7  |-  F/ x  A  e.  B
10 rspct.1 . . . . . . 7  |-  F/ x ps
119, 10nfim 1825 . . . . . 6  |-  F/ x
( A  e.  B  ->  ps )
12 nfcv 2764 . . . . . 6  |-  F/_ x A
1311, 12spcgft 3285 . . . . 5  |-  ( A. x ( x  =  A  ->  ( (
x  e.  B  ->  ph )  <->  ( A  e.  B  ->  ps )
) )  ->  ( A  e.  B  ->  ( A. x ( x  e.  B  ->  ph )  ->  ( A  e.  B  ->  ps ) ) ) )
148, 13syl 17 . . . 4  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( A. x ( x  e.  B  ->  ph )  ->  ( A  e.  B  ->  ps ) ) ) )
151, 14syl7bi 245 . . 3  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  ( A  e.  B  ->  ps ) ) ) )
1615com34 91 . 2  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( A  e.  B  -> 
( A. x  e.  B  ph  ->  ps ) ) ) )
1716pm2.43d 53 1  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  ps ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202
This theorem is referenced by:  rspcdf  42424
  Copyright terms: Public domain W3C validator