| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspct | Structured version Visualization version Unicode version | ||
| Description: A closed version of rspc 3303. (Contributed by Andrew Salmon, 6-Jun-2011.) |
| Ref | Expression |
|---|---|
| rspct.1 |
|
| Ref | Expression |
|---|---|
| rspct |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2917 |
. . . 4
| |
| 2 | eleq1 2689 |
. . . . . . . . . 10
| |
| 3 | 2 | adantr 481 |
. . . . . . . . 9
|
| 4 | simpr 477 |
. . . . . . . . 9
| |
| 5 | 3, 4 | imbi12d 334 |
. . . . . . . 8
|
| 6 | 5 | ex 450 |
. . . . . . 7
|
| 7 | 6 | a2i 14 |
. . . . . 6
|
| 8 | 7 | alimi 1739 |
. . . . 5
|
| 9 | nfv 1843 |
. . . . . . 7
| |
| 10 | rspct.1 |
. . . . . . 7
| |
| 11 | 9, 10 | nfim 1825 |
. . . . . 6
|
| 12 | nfcv 2764 |
. . . . . 6
| |
| 13 | 11, 12 | spcgft 3285 |
. . . . 5
|
| 14 | 8, 13 | syl 17 |
. . . 4
|
| 15 | 1, 14 | syl7bi 245 |
. . 3
|
| 16 | 15 | com34 91 |
. 2
|
| 17 | 16 | pm2.43d 53 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 |
| This theorem is referenced by: rspcdf 42424 |
| Copyright terms: Public domain | W3C validator |