MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcbid Structured version   Visualization version   Unicode version

Theorem sbcbid 3489
Description: Formula-building deduction rule for class substitution. (Contributed by NM, 29-Dec-2014.)
Hypotheses
Ref Expression
sbcbid.1  |-  F/ x ph
sbcbid.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
sbcbid  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  [. A  /  x ]. ch ) )

Proof of Theorem sbcbid
StepHypRef Expression
1 sbcbid.1 . . . 4  |-  F/ x ph
2 sbcbid.2 . . . 4  |-  ( ph  ->  ( ps  <->  ch )
)
31, 2abbid 2740 . . 3  |-  ( ph  ->  { x  |  ps }  =  { x  |  ch } )
43eleq2d 2687 . 2  |-  ( ph  ->  ( A  e.  {
x  |  ps }  <->  A  e.  { x  |  ch } ) )
5 df-sbc 3436 . 2  |-  ( [. A  /  x ]. ps  <->  A  e.  { x  |  ps } )
6 df-sbc 3436 . 2  |-  ( [. A  /  x ]. ch  <->  A  e.  { x  |  ch } )
74, 5, 63bitr4g 303 1  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  [. A  /  x ]. ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   F/wnf 1708    e. wcel 1990   {cab 2608   [.wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-sbc 3436
This theorem is referenced by:  sbcbidv  3490  csbeq2d  3991
  Copyright terms: Public domain W3C validator