Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbeqalbi Structured version   Visualization version   Unicode version

Theorem sbeqalbi 38601
Description: When both  x and  z and  y and  z are both distinct, then the converse of sbeqal1 holds as well. (Contributed by Andrew Salmon, 2-Jun-2011.)
Assertion
Ref Expression
sbeqalbi  |-  ( x  =  y  <->  A. z
( z  =  x  ->  z  =  y ) )
Distinct variable groups:    y, z    x, z

Proof of Theorem sbeqalbi
StepHypRef Expression
1 equtrr 1949 . . 3  |-  ( x  =  y  ->  (
z  =  x  -> 
z  =  y ) )
21alrimiv 1855 . 2  |-  ( x  =  y  ->  A. z
( z  =  x  ->  z  =  y ) )
3 sbeqal1 38598 . 2  |-  ( A. z ( z  =  x  ->  z  =  y )  ->  x  =  y )
42, 3impbii 199 1  |-  ( x  =  y  <->  A. z
( z  =  x  ->  z  =  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator