Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  selconj Structured version   Visualization version   Unicode version

Theorem selconj 33902
Description: An inference for selecting one of a list of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019.)
Hypothesis
Ref Expression
selconj.1  |-  ( ph  <->  ( ps  /\  ch )
)
Assertion
Ref Expression
selconj  |-  ( ( et  /\  ph )  <->  ( ps  /\  ( et 
/\  ch ) ) )

Proof of Theorem selconj
StepHypRef Expression
1 selconj.1 . . 3  |-  ( ph  <->  ( ps  /\  ch )
)
21anbi2i 730 . 2  |-  ( ( et  /\  ph )  <->  ( et  /\  ( ps 
/\  ch ) ) )
3 an12 838 . 2  |-  ( ( ps  /\  ( et 
/\  ch ) )  <->  ( et  /\  ( ps  /\  ch ) ) )
42, 3bitr4i 267 1  |-  ( ( et  /\  ph )  <->  ( ps  /\  ( et 
/\  ch ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator