![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an12 | Structured version Visualization version Unicode version |
Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
an12 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 466 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | anbi1i 731 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | anass 681 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | anass 681 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | 3bitr3i 290 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: an32 839 an13 840 an12s 843 an4 865 ceqsrexv 3336 rmoan 3406 2reuswap 3410 reuind 3411 sbccomlem 3508 elunirab 4448 axsep 4780 reuxfr2d 4891 opeliunxp 5170 elres 5435 resoprab 6756 elrnmpt2res 6774 ov6g 6798 opabex3d 7145 opabex3 7146 dfrecs3 7469 oeeu 7683 xpassen 8054 omxpenlem 8061 dfac5lem2 8947 ltexprlem4 9861 rexuz2 11739 2clim 14303 divalglem10 15125 bitsmod 15158 isssc 16480 eldmcoa 16715 issubrg 18780 isbasis2g 20752 tgval2 20760 is1stc2 21245 elflim2 21768 i1fres 23472 dvdsflsumcom 24914 vmasum 24941 logfac2 24942 axcontlem2 25845 fusgr2wsp2nb 27198 2reuswap2 29328 reuxfr3d 29329 1stpreima 29484 bnj849 30995 elima4 31679 elfuns 32022 brimg 32044 dfrecs2 32057 dfrdg4 32058 bj-axsep 32793 bj-restuni 33050 mptsnunlem 33185 relowlpssretop 33212 poimirlem27 33436 sstotbnd3 33575 an12i 33900 selconj 33902 eldmqsres 34051 islshpat 34304 islpln5 34821 islvol5 34865 cdleme0nex 35577 dicelval3 36469 mapdordlem1a 36923 2rmoswap 41184 elpglem3 42456 |
Copyright terms: Public domain | W3C validator |