MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl312anc Structured version   Visualization version   Unicode version

Theorem syl312anc 1347
Description: Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.)
Hypotheses
Ref Expression
syl12anc.1  |-  ( ph  ->  ps )
syl12anc.2  |-  ( ph  ->  ch )
syl12anc.3  |-  ( ph  ->  th )
syl22anc.4  |-  ( ph  ->  ta )
syl23anc.5  |-  ( ph  ->  et )
syl33anc.6  |-  ( ph  ->  ze )
syl312anc.7  |-  ( ( ( ps  /\  ch  /\ 
th )  /\  ta  /\  ( et  /\  ze ) )  ->  si )
Assertion
Ref Expression
syl312anc  |-  ( ph  ->  si )

Proof of Theorem syl312anc
StepHypRef Expression
1 syl12anc.1 . 2  |-  ( ph  ->  ps )
2 syl12anc.2 . 2  |-  ( ph  ->  ch )
3 syl12anc.3 . 2  |-  ( ph  ->  th )
4 syl22anc.4 . 2  |-  ( ph  ->  ta )
5 syl23anc.5 . . 3  |-  ( ph  ->  et )
6 syl33anc.6 . . 3  |-  ( ph  ->  ze )
75, 6jca 554 . 2  |-  ( ph  ->  ( et  /\  ze ) )
8 syl312anc.7 . 2  |-  ( ( ( ps  /\  ch  /\ 
th )  /\  ta  /\  ( et  /\  ze ) )  ->  si )
91, 2, 3, 4, 7, 8syl311anc 1340 1  |-  ( ph  ->  si )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039
This theorem is referenced by:  pythagtriplem19  15538  cdleme27cl  35654  cdlemefs27cl  35701  cdleme32fvcl  35728  cdlemg16ALTN  35946  cdlemg27a  35980  cdlemg31c  35987  cdlemg39  36004  cdlemk11ta  36217  cdlemk19ylem  36218  cdlemk11tc  36233  cdlemk45  36235  dihmeetlem12N  36607  dihjatc  36706
  Copyright terms: Public domain W3C validator