MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem19 Structured version   Visualization version   Unicode version

Theorem pythagtriplem19 15538
Description: Lemma for pythagtrip 15539. Introduce  k and remove the relative primality requirement. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem19  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
Distinct variable groups:    A, m, n, k    B, m, n, k    C, m, n, k

Proof of Theorem pythagtriplem19
StepHypRef Expression
1 nnz 11399 . . . . . . 7  |-  ( A  e.  NN  ->  A  e.  ZZ )
2 nnz 11399 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  ZZ )
31, 2anim12i 590 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
4 nnne0 11053 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  =/=  0 )
54neneqd 2799 . . . . . . . 8  |-  ( A  e.  NN  ->  -.  A  =  0 )
65intnanrd 963 . . . . . . 7  |-  ( A  e.  NN  ->  -.  ( A  =  0  /\  B  =  0
) )
76adantr 481 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  -.  ( A  =  0  /\  B  =  0 ) )
8 gcdn0cl 15224 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
93, 7, 8syl2anc 693 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
1093adant3 1081 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  NN )
11103ad2ant1 1082 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( A  gcd  B
)  e.  NN )
12 gcddvds 15225 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
131, 2, 12syl2an 494 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
14133adant3 1081 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  A  /\  ( A  gcd  B ) 
||  B ) )
1514simpld 475 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  ||  A )
1610nnzd 11481 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  ZZ )
1710nnne0d 11065 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  =/=  0 )
1813ad2ant1 1082 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  ZZ )
19 dvdsval2 14986 . . . . . . . . 9  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  A  e.  ZZ )  ->  (
( A  gcd  B
)  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
2016, 17, 18, 19syl3anc 1326 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
2115, 20mpbid 222 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  /  ( A  gcd  B ) )  e.  ZZ )
22 nnre 11027 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  e.  RR )
23223ad2ant1 1082 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  RR )
2410nnred 11035 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  RR )
25 nngt0 11049 . . . . . . . . 9  |-  ( A  e.  NN  ->  0  <  A )
26253ad2ant1 1082 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  A )
2710nngt0d 11064 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( A  gcd  B
) )
2823, 24, 26, 27divgt0d 10959 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( A  /  ( A  gcd  B ) ) )
29 elnnz 11387 . . . . . . 7  |-  ( ( A  /  ( A  gcd  B ) )  e.  NN  <->  ( ( A  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( A  /  ( A  gcd  B ) ) ) )
3021, 28, 29sylanbrc 698 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  /  ( A  gcd  B ) )  e.  NN )
31303ad2ant1 1082 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( A  /  ( A  gcd  B ) )  e.  NN )
3214simprd 479 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  ||  B )
3323ad2ant2 1083 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  ZZ )
34 dvdsval2 14986 . . . . . . . . 9  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  B  e.  ZZ )  ->  (
( A  gcd  B
)  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  ZZ ) )
3516, 17, 33, 34syl3anc 1326 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  ZZ ) )
3632, 35mpbid 222 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  e.  ZZ )
37 nnre 11027 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  e.  RR )
38373ad2ant2 1083 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  RR )
39 nngt0 11049 . . . . . . . . 9  |-  ( B  e.  NN  ->  0  <  B )
40393ad2ant2 1083 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  B )
4138, 24, 40, 27divgt0d 10959 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( B  /  ( A  gcd  B ) ) )
42 elnnz 11387 . . . . . . 7  |-  ( ( B  /  ( A  gcd  B ) )  e.  NN  <->  ( ( B  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( B  /  ( A  gcd  B ) ) ) )
4336, 41, 42sylanbrc 698 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  e.  NN )
44433ad2ant1 1082 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( B  /  ( A  gcd  B ) )  e.  NN )
45 dvdssq 15280 . . . . . . . . . . . . . . 15  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  <->  ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 ) ) )
4616, 18, 45syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  A  <->  ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 ) ) )
47 dvdssq 15280 . . . . . . . . . . . . . . 15  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  B  <->  ( ( A  gcd  B ) ^
2 )  ||  ( B ^ 2 ) ) )
4816, 33, 47syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  B  <->  ( ( A  gcd  B ) ^
2 )  ||  ( B ^ 2 ) ) )
4946, 48anbi12d 747 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B )  <->  ( (
( A  gcd  B
) ^ 2 ) 
||  ( A ^
2 )  /\  (
( A  gcd  B
) ^ 2 ) 
||  ( B ^
2 ) ) ) )
5014, 49mpbid 222 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A  gcd  B ) ^ 2 ) 
||  ( A ^
2 )  /\  (
( A  gcd  B
) ^ 2 ) 
||  ( B ^
2 ) ) )
5110nnsqcld 13029 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 )  e.  NN )
5251nnzd 11481 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 )  e.  ZZ )
53 nnsqcl 12933 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN  ->  ( A ^ 2 )  e.  NN )
54533ad2ant1 1082 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  NN )
5554nnzd 11481 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  ZZ )
56 nnsqcl 12933 . . . . . . . . . . . . . . 15  |-  ( B  e.  NN  ->  ( B ^ 2 )  e.  NN )
57563ad2ant2 1083 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  NN )
5857nnzd 11481 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  ZZ )
59 dvds2add 15015 . . . . . . . . . . . . 13  |-  ( ( ( ( A  gcd  B ) ^ 2 )  e.  ZZ  /\  ( A ^ 2 )  e.  ZZ  /\  ( B ^ 2 )  e.  ZZ )  ->  (
( ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 )  /\  ( ( A  gcd  B ) ^ 2 ) 
||  ( B ^
2 ) )  -> 
( ( A  gcd  B ) ^ 2 ) 
||  ( ( A ^ 2 )  +  ( B ^ 2 ) ) ) )
6052, 55, 58, 59syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 )  /\  ( ( A  gcd  B ) ^ 2 ) 
||  ( B ^
2 ) )  -> 
( ( A  gcd  B ) ^ 2 ) 
||  ( ( A ^ 2 )  +  ( B ^ 2 ) ) ) )
6150, 60mpd 15 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 ) 
||  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
6261adantr 481 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B ) ^
2 )  ||  (
( A ^ 2 )  +  ( B ^ 2 ) ) )
63 simpr 477 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )
6462, 63breqtrd 4679 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B ) ^
2 )  ||  ( C ^ 2 ) )
65 nnz 11399 . . . . . . . . . . . 12  |-  ( C  e.  NN  ->  C  e.  ZZ )
66653ad2ant3 1084 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  ZZ )
67 dvdssq 15280 . . . . . . . . . . 11  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( A  gcd  B )  ||  C  <->  ( ( A  gcd  B ) ^
2 )  ||  ( C ^ 2 ) ) )
6816, 66, 67syl2anc 693 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  C  <->  ( ( A  gcd  B ) ^
2 )  ||  ( C ^ 2 ) ) )
6968adantr 481 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B )  ||  C 
<->  ( ( A  gcd  B ) ^ 2 ) 
||  ( C ^
2 ) ) )
7064, 69mpbird 247 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( A  gcd  B )  ||  C )
71 dvdsval2 14986 . . . . . . . . . 10  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  C  e.  ZZ )  ->  (
( A  gcd  B
)  ||  C  <->  ( C  /  ( A  gcd  B ) )  e.  ZZ ) )
7216, 17, 66, 71syl3anc 1326 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  C  <->  ( C  /  ( A  gcd  B ) )  e.  ZZ ) )
7372adantr 481 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B )  ||  C 
<->  ( C  /  ( A  gcd  B ) )  e.  ZZ ) )
7470, 73mpbid 222 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( C  / 
( A  gcd  B
) )  e.  ZZ )
75 nnre 11027 . . . . . . . . . 10  |-  ( C  e.  NN  ->  C  e.  RR )
76753ad2ant3 1084 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  RR )
77 nngt0 11049 . . . . . . . . . 10  |-  ( C  e.  NN  ->  0  <  C )
78773ad2ant3 1084 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  C )
7976, 24, 78, 27divgt0d 10959 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( C  /  ( A  gcd  B ) ) )
8079adantr 481 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  0  <  ( C  /  ( A  gcd  B ) ) )
81 elnnz 11387 . . . . . . 7  |-  ( ( C  /  ( A  gcd  B ) )  e.  NN  <->  ( ( C  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( C  /  ( A  gcd  B ) ) ) )
8274, 80, 81sylanbrc 698 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( C  / 
( A  gcd  B
) )  e.  NN )
83823adant3 1081 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( C  /  ( A  gcd  B ) )  e.  NN )
84 nncn 11028 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  A  e.  CC )
85843ad2ant1 1082 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  CC )
8610nncnd 11036 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  CC )
8785, 86, 17sqdivd 13021 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  ( A  gcd  B ) ) ^ 2 )  =  ( ( A ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) )
88 nncn 11028 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  B  e.  CC )
89883ad2ant2 1083 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  CC )
9089, 86, 17sqdivd 13021 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( B  /  ( A  gcd  B ) ) ^ 2 )  =  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) )
9187, 90oveq12d 6668 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A  / 
( A  gcd  B
) ) ^ 2 )  +  ( ( B  /  ( A  gcd  B ) ) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) )  +  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) ) )
92913ad2ant1 1082 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A  /  ( A  gcd  B ) ) ^ 2 )  +  ( ( B  /  ( A  gcd  B ) ) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) )  +  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) ) )
9354nncnd 11036 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  CC )
9457nncnd 11036 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  CC )
9551nncnd 11036 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 )  e.  CC )
9651nnne0d 11065 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 )  =/=  0 )
9793, 94, 95, 96divdird 10839 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  /  ( ( A  gcd  B ) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) )  +  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) ) )
98973ad2ant1 1082 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  (
( A  gcd  B
) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^ 2 ) )  +  ( ( B ^ 2 )  / 
( ( A  gcd  B ) ^ 2 ) ) ) )
9992, 98eqtr4d 2659 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A  /  ( A  gcd  B ) ) ^ 2 )  +  ( ( B  /  ( A  gcd  B ) ) ^ 2 ) )  =  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  / 
( ( A  gcd  B ) ^ 2 ) ) )
100 nncn 11028 . . . . . . . . . 10  |-  ( C  e.  NN  ->  C  e.  CC )
1011003ad2ant3 1084 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  CC )
102101, 86, 17sqdivd 13021 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( C  /  ( A  gcd  B ) ) ^ 2 )  =  ( ( C ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) )
1031023ad2ant1 1082 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( C  / 
( A  gcd  B
) ) ^ 2 )  =  ( ( C ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) ) )
104 oveq1 6657 . . . . . . . 8  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  /  ( ( A  gcd  B ) ^ 2 ) )  =  ( ( C ^ 2 )  / 
( ( A  gcd  B ) ^ 2 ) ) )
1051043ad2ant2 1083 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  (
( A  gcd  B
) ^ 2 ) )  =  ( ( C ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) ) )
106103, 105eqtr4d 2659 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( C  / 
( A  gcd  B
) ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  ( ( A  gcd  B ) ^
2 ) ) )
10799, 106eqtr4d 2659 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A  /  ( A  gcd  B ) ) ^ 2 )  +  ( ( B  /  ( A  gcd  B ) ) ^ 2 ) )  =  ( ( C  /  ( A  gcd  B ) ) ^ 2 ) )
108 gcddiv 15268 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( A  gcd  B )  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )  ->  ( ( A  gcd  B )  / 
( A  gcd  B
) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) ) )
10918, 33, 10, 14, 108syl31anc 1329 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  /  ( A  gcd  B ) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) ) )
11086, 17dividd 10799 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  /  ( A  gcd  B ) )  =  1 )
111109, 110eqtr3d 2658 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 )
1121113ad2ant1 1082 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 )
113 simp3 1063 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  -.  2  ||  ( A  /  ( A  gcd  B ) ) )
114 pythagtriplem18 15537 . . . . 5  |-  ( ( ( ( A  / 
( A  gcd  B
) )  e.  NN  /\  ( B  /  ( A  gcd  B ) )  e.  NN  /\  ( C  /  ( A  gcd  B ) )  e.  NN )  /\  ( ( ( A  /  ( A  gcd  B ) ) ^ 2 )  +  ( ( B  / 
( A  gcd  B
) ) ^ 2 ) )  =  ( ( C  /  ( A  gcd  B ) ) ^ 2 )  /\  ( ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) ) )  ->  E. n  e.  NN  E. m  e.  NN  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) )
11531, 44, 83, 107, 112, 113, 114syl312anc 1347 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  (
( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) )
11685, 86, 17divcan2d 10803 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  x.  ( A  /  ( A  gcd  B ) ) )  =  A )
117116eqcomd 2628 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) ) )
11889, 86, 17divcan2d 10803 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  x.  ( B  /  ( A  gcd  B ) ) )  =  B )
119118eqcomd 2628 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) ) )
120101, 86, 17divcan2d 10803 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  x.  ( C  /  ( A  gcd  B ) ) )  =  C )
121120eqcomd 2628 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) )
122117, 119, 1213jca 1242 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) ) )
1231223ad2ant1 1082 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( A  =  ( ( A  gcd  B
)  x.  ( A  /  ( A  gcd  B ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) ) )
124 oveq2 6658 . . . . . . . . . 10  |-  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  ->  (
( A  gcd  B
)  x.  ( A  /  ( A  gcd  B ) ) )  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) )
125124eqeq2d 2632 . . . . . . . . 9  |-  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  ->  ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  <->  A  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )
1261253ad2ant1 1082 . . . . . . . 8  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  <->  A  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )
127 oveq2 6658 . . . . . . . . . 10  |-  ( ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n
) )  ->  (
( A  gcd  B
)  x.  ( B  /  ( A  gcd  B ) ) )  =  ( ( A  gcd  B )  x.  ( 2  x.  ( m  x.  n ) ) ) )
128127eqeq2d 2632 . . . . . . . . 9  |-  ( ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n
) )  ->  ( B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  <->  B  =  (
( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) ) ) )
1291283ad2ant2 1083 . . . . . . . 8  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  <->  B  =  (
( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) ) ) )
130 oveq2 6658 . . . . . . . . . 10  |-  ( ( C  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) )  ->  (
( A  gcd  B
)  x.  ( C  /  ( A  gcd  B ) ) )  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )
131130eqeq2d 2632 . . . . . . . . 9  |-  ( ( C  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) )  ->  ( C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) )  <->  C  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )
1321313ad2ant3 1084 . . . . . . . 8  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) )  <->  C  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )
133126, 129, 1323anbi123d 1399 . . . . . . 7  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) )  <->  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
134123, 133syl5ibcom 235 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
135134reximdv 3016 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( E. m  e.  NN  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
136135reximdv 3016 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( E. n  e.  NN  E. m  e.  NN  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
137115, 136mpd 15 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
138 oveq1 6657 . . . . . . 7  |-  ( k  =  ( A  gcd  B )  ->  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) )
139138eqeq2d 2632 . . . . . 6  |-  ( k  =  ( A  gcd  B )  ->  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  <->  A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )
140 oveq1 6657 . . . . . . 7  |-  ( k  =  ( A  gcd  B )  ->  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) ) )
141140eqeq2d 2632 . . . . . 6  |-  ( k  =  ( A  gcd  B )  ->  ( B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  <->  B  =  ( ( A  gcd  B )  x.  ( 2  x.  ( m  x.  n ) ) ) ) )
142 oveq1 6657 . . . . . . 7  |-  ( k  =  ( A  gcd  B )  ->  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) )  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )
143142eqeq2d 2632 . . . . . 6  |-  ( k  =  ( A  gcd  B )  ->  ( C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) )  <->  C  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )
144139, 141, 1433anbi123d 1399 . . . . 5  |-  ( k  =  ( A  gcd  B )  ->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
1451442rexbidv 3057 . . . 4  |-  ( k  =  ( A  gcd  B )  ->  ( E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
146145rspcev 3309 . . 3  |-  ( ( ( A  gcd  B
)  e.  NN  /\  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )  ->  E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
14711, 137, 146syl2anc 693 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
148 rexcom 3099 . . 3  |-  ( E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. k  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
149 rexcom 3099 . . . 4  |-  ( E. k  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
150149rexbii 3041 . . 3  |-  ( E. n  e.  NN  E. k  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
151148, 150bitri 264 . 2  |-  ( E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
152147, 151sylib 208 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   ^cexp 12860    || cdvds 14983    gcd cgcd 15216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386
This theorem is referenced by:  pythagtrip  15539
  Copyright terms: Public domain W3C validator