MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trunanfal Structured version   Visualization version   Unicode version

Theorem trunanfal 1525
Description: A  -/\ identity. (Contributed by Anthony Hart, 23-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 10-Jul-2020.)
Assertion
Ref Expression
trunanfal  |-  ( ( T.  -/\ F.  )  <-> T.  )

Proof of Theorem trunanfal
StepHypRef Expression
1 df-nan 1448 . . 3  |-  ( ( T.  -/\ F.  )  <->  -.  ( T.  /\ F.  ) )
2 truanfal 1507 . . 3  |-  ( ( T.  /\ F.  )  <-> F.  )
31, 2xchbinx 324 . 2  |-  ( ( T.  -/\ F.  )  <->  -. F.  )
4 notfal 1519 . 2  |-  ( -. F.  <-> T.  )
53, 4bitri 264 1  |-  ( ( T.  -/\ F.  )  <-> T.  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    -/\ wnan 1447   T. wtru 1484   F. wfal 1488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-nan 1448  df-tru 1486  df-fal 1489
This theorem is referenced by:  falnantru  1526
  Copyright terms: Public domain W3C validator