Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tsbi2 Structured version   Visualization version   Unicode version

Theorem tsbi2 33941
Description: A Tseitin axiom for logical biimplication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
Assertion
Ref Expression
tsbi2  |-  ( th 
->  ( ( ph  \/  ps )  \/  ( ph 
<->  ps ) ) )

Proof of Theorem tsbi2
StepHypRef Expression
1 pm5.21 903 . . . 4  |-  ( ( -.  ph  /\  -.  ps )  ->  ( ph  <->  ps )
)
21olcd 408 . . 3  |-  ( ( -.  ph  /\  -.  ps )  ->  ( ( ph  \/  ps )  \/  ( ph 
<->  ps ) ) )
3 pm4.57 518 . . . . 5  |-  ( -.  ( -.  ph  /\  -.  ps )  <->  ( ph  \/  ps ) )
43biimpi 206 . . . 4  |-  ( -.  ( -.  ph  /\  -.  ps )  ->  ( ph  \/  ps ) )
54orcd 407 . . 3  |-  ( -.  ( -.  ph  /\  -.  ps )  ->  (
( ph  \/  ps )  \/  ( ph  <->  ps ) ) )
62, 5pm2.61i 176 . 2  |-  ( (
ph  \/  ps )  \/  ( ph  <->  ps )
)
76a1i 11 1  |-  ( th 
->  ( ( ph  \/  ps )  \/  ( ph 
<->  ps ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386
This theorem is referenced by:  tsxo2  33945  mpt2bi123f  33971  mptbi12f  33975  ac6s6  33980
  Copyright terms: Public domain W3C validator