| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vd01 | Structured version Visualization version Unicode version | ||
| Description: A virtual hypothesis virtually infers a theorem. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vd01.1 |
|
| Ref | Expression |
|---|---|
| vd01 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vd01.1 |
. . 3
| |
| 2 | 1 | a1i 11 |
. 2
|
| 3 | 2 | dfvd1ir 38789 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-vd1 38786 |
| This theorem is referenced by: e210 38884 e201 38886 e021 38890 e012 38892 e102 38894 e110 38901 e101 38903 e011 38905 e100 38907 e010 38909 e001 38911 e01 38916 e10 38919 sspwimpVD 39155 |
| Copyright terms: Public domain | W3C validator |