Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vd01 Structured version   Visualization version   Unicode version

Theorem vd01 38822
Description: A virtual hypothesis virtually infers a theorem. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
vd01.1  |-  ph
Assertion
Ref Expression
vd01  |-  (. ps  ->.  ph ).

Proof of Theorem vd01
StepHypRef Expression
1 vd01.1 . . 3  |-  ph
21a1i 11 . 2  |-  ( ps 
->  ph )
32dfvd1ir 38789 1  |-  (. ps  ->.  ph ).
Colors of variables: wff setvar class
Syntax hints:   (.wvd1 38785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-vd1 38786
This theorem is referenced by:  e210  38884  e201  38886  e021  38890  e012  38892  e102  38894  e110  38901  e101  38903  e011  38905  e100  38907  e010  38909  e001  38911  e01  38916  e10  38919  sspwimpVD  39155
  Copyright terms: Public domain W3C validator