Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vd02 Structured version   Visualization version   Unicode version

Theorem vd02 38823
Description: Two virtual hypotheses virtually infer a theorem. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
vd02.1  |-  ph
Assertion
Ref Expression
vd02  |-  (. ps ,. ch  ->.  ph ).

Proof of Theorem vd02
StepHypRef Expression
1 vd02.1 . . . 4  |-  ph
21a1i 11 . . 3  |-  ( ch 
->  ph )
32a1i 11 . 2  |-  ( ps 
->  ( ch  ->  ph )
)
43dfvd2ir 38802 1  |-  (. ps ,. ch  ->.  ph ).
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   (.wvd2 38793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-vd2 38794
This theorem is referenced by:  e220  38862  e202  38864  e022  38866  e002  38868  e020  38870  e200  38872  e02  38922  e20  38954
  Copyright terms: Public domain W3C validator