Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-id Structured version   Visualization version   Unicode version

Theorem wl-id 33265
Description: Principle of identity. Theorem *2.08 of [WhiteheadRussell] p. 101. Copy of id 22 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
wl-id  |-  ( ph  ->  ph )

Proof of Theorem wl-id
StepHypRef Expression
1 ax-luk3 33243 . 2  |-  ( ph  ->  ( -.  ph  ->  ph ) )
2 ax-luk2 33242 . 2  |-  ( ( -.  ph  ->  ph )  ->  ph )
31, 2wl-syl 33246 1  |-  ( ph  ->  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 33241  ax-luk2 33242  ax-luk3 33243
This theorem is referenced by:  wl-notnotr  33266
  Copyright terms: Public domain W3C validator