Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-mps Structured version   Visualization version   Unicode version

Theorem wl-mps 33290
Description: Replacing a nested consequent. A sort of modus ponens in antecedent position. (Contributed by Wolf Lammen, 20-Sep-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
wl-mps.1  |-  ( ph  ->  ( ps  ->  ch ) )
wl-mps.2  |-  ( (
ph  ->  ch )  ->  th )
Assertion
Ref Expression
wl-mps  |-  ( (
ph  ->  ps )  ->  th )

Proof of Theorem wl-mps
StepHypRef Expression
1 wl-mps.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21a2i 14 . 2  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ch )
)
3 wl-mps.2 . 2  |-  ( (
ph  ->  ch )  ->  th )
42, 3syl 17 1  |-  ( (
ph  ->  ps )  ->  th )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  wl-syls1  33291
  Copyright terms: Public domain W3C validator