| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xorcom | Structured version Visualization version Unicode version | ||
| Description: The connector |
| Ref | Expression |
|---|---|
| xorcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 212 |
. . 3
| |
| 2 | 1 | notbii 310 |
. 2
|
| 3 | df-xor 1465 |
. 2
| |
| 4 | df-xor 1465 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-xor 1465 |
| This theorem is referenced by: xorneg1 1475 falxortru 1530 hadcoma 1538 hadcomb 1539 cadcoma 1551 |
| Copyright terms: Public domain | W3C validator |