| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xorcom | Structured version Visualization version GIF version | ||
| Description: The connector ⊻ is commutative. (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| xorcom | ⊢ ((𝜑 ⊻ 𝜓) ↔ (𝜓 ⊻ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 212 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) | |
| 2 | 1 | notbii 310 | . 2 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ ¬ (𝜓 ↔ 𝜑)) |
| 3 | df-xor 1465 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) | |
| 4 | df-xor 1465 | . 2 ⊢ ((𝜓 ⊻ 𝜑) ↔ ¬ (𝜓 ↔ 𝜑)) | |
| 5 | 2, 3, 4 | 3bitr4i 292 | 1 ⊢ ((𝜑 ⊻ 𝜓) ↔ (𝜓 ⊻ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ⊻ wxo 1464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-xor 1465 |
| This theorem is referenced by: xorneg1 1475 falxortru 1530 hadcoma 1538 hadcomb 1539 cadcoma 1551 |
| Copyright terms: Public domain | W3C validator |