| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.28OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete proof of 19.28 2096 as of 6-Oct-2021. (Contributed by NM, 1-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 19.28OLD.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| 19.28OLD | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 1798 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | |
| 2 | 19.28OLD.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | 19.3OLD 2202 | . . 3 ⊢ (∀𝑥𝜑 ↔ 𝜑) |
| 4 | 3 | anbi1i 731 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
| 5 | 1, 4 | bitri 264 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 ∀wal 1481 ℲwnfOLD 1709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-nfOLD 1721 |
| This theorem is referenced by: nfan1OLD 2236 |
| Copyright terms: Public domain | W3C validator |