MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.28OLD Structured version   Visualization version   GIF version

Theorem 19.28OLD 2235
Description: Obsolete proof of 19.28 2096 as of 6-Oct-2021. (Contributed by NM, 1-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
19.28OLD.1 𝑥𝜑
Assertion
Ref Expression
19.28OLD (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))

Proof of Theorem 19.28OLD
StepHypRef Expression
1 19.26 1798 . 2 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
2 19.28OLD.1 . . . 4 𝑥𝜑
3219.3OLD 2202 . . 3 (∀𝑥𝜑𝜑)
43anbi1i 731 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
51, 4bitri 264 1 (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  wal 1481  wnfOLD 1709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-nfOLD 1721
This theorem is referenced by:  nfan1OLD  2236
  Copyright terms: Public domain W3C validator