| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.28 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.28 of [Margaris] p. 90. See 19.28v 1909 for a version requiring fewer axioms. (Contributed by NM, 1-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.28.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| 19.28 | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 1798 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | |
| 2 | 19.28.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | 19.3 2069 | . . 3 ⊢ (∀𝑥𝜑 ↔ 𝜑) |
| 4 | 3 | anbi1i 731 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
| 5 | 1, 4 | bitri 264 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 ∀wal 1481 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: aaan 2170 wl-ax11-lem7 33368 |
| Copyright terms: Public domain | W3C validator |